Introductory Statistical Inference with the Likelihood Function

This textbook covers the fundamentals of statistical inference and statistical theory including Bayesian and frequentist approaches and methodology possible without excessive emphasis on the underlying mathematics. This book is about some of the basic principles of statistics that are necessary to u...

Full description

Main Author: Rohde, Charles A. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-10461-4
LEADER 03108nam a22004695i 4500
001 978-3-319-10461-4
003 DE-He213
005 20210617012335.0
007 cr nn 008mamaa
008 141031s2014 gw | s |||| 0|eng d
020 |a 9783319104614  |9 978-3-319-10461-4 
024 7 |a 10.1007/978-3-319-10461-4  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a MBNS  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Rohde, Charles A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introductory Statistical Inference with the Likelihood Function  |h [electronic resource] /  |c by Charles A. Rohde. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 332 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This textbook covers the fundamentals of statistical inference and statistical theory including Bayesian and frequentist approaches and methodology possible without excessive emphasis on the underlying mathematics. This book is about some of the basic principles of statistics that are necessary to understand and evaluate methods for analyzing complex data sets. The likelihood function is used for pure likelihood inference throughout the book. There is also coverage of severity and finite population sampling. The material was developed from an introductory statistical theory course taught by the author at the Johns Hopkins University’s Department of Biostatistics. Students and instructors in public health programs will benefit from the likelihood modeling approach that is used throughout the text. This will also appeal to epidemiologists and psychometricians.  After a brief introduction, there are chapters on estimation, hypothesis testing, and maximum likelihood modeling. The book concludes with sections on Bayesian computation and inference. An appendix contains unique coverage of the interpretation of probability, and coverage of probability and mathematical concepts. 
650 0 |a Statistics . 
650 1 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17030 
650 2 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Statistics, general.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S0000X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319104621 
776 0 8 |i Printed edition:  |z 9783319104607 
776 0 8 |i Printed edition:  |z 9783319374819 
856 4 0 |u https://doi.org/10.1007/978-3-319-10461-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)