Measuring Scholarly Impact Methods and Practice /

This book is an authoritative handbook of current topics, technologies and methodological approaches that may be used for the study of scholarly impact. The included methods cover a range of fields such as statistical sciences, scientific visualization, network analysis, text mining, and information...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Ding, Ying. (Editor, http://id.loc.gov/vocabulary/relators/edt), Rousseau, Ronald. (Editor, http://id.loc.gov/vocabulary/relators/edt), Wolfram, Dietmar. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-10377-8
LEADER 04441nam a22005895i 4500
001 978-3-319-10377-8
003 DE-He213
005 20210617040457.0
007 cr nn 008mamaa
008 141106s2014 gw | s |||| 0|eng d
020 |a 9783319103778  |9 978-3-319-10377-8 
024 7 |a 10.1007/978-3-319-10377-8  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
245 1 0 |a Measuring Scholarly Impact  |h [electronic resource] :  |b Methods and Practice /  |c edited by Ying Ding, Ronald Rousseau, Dietmar Wolfram. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 346 p. 89 illus., 68 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Community detection and visualization of networks with the map equation framework -- Link Prediction -- Network analysis and indicators -- PageRank-related methods for analyzing citation networks -- Systems Life Cycle and its relation with the Triple Helix -- Spatial scientometrics and scholarly impact: A review of recent studies, tools and methods -- Researchers’ publication patterns and their use for author disambiguation -- Knowledge integration and diffusion: Measures and mapping of diversity and coherence -- Limited dependent variables models and probabilistic prediction in informetrics -- Text mining with the Stanford CoreNLP -- Topic modeling: Measuring scholarly impact using a topical lens -- The substantive and practical significance of citation impact differences between institutions: Guidelines for the analysis of percentiles using effect sizes and confidence intervals -- Visualizing bibliometric networks -- Replicable science of science studies. 
520 |a This book is an authoritative handbook of current topics, technologies and methodological approaches that may be used for the study of scholarly impact. The included methods cover a range of fields such as statistical sciences, scientific visualization, network analysis, text mining, and information retrieval. The techniques and tools enable researchers to investigate metric phenomena and to assess scholarly impact in new ways. Each chapter offers an introduction to the selected topic and outlines how the topic, technology or methodological approach may be applied to metrics-related research. Comprehensive and up-to-date, Measuring Scholarly Impact: Methods and Practice is designed for researchers and scholars interested in informetrics, scientometrics, and text mining. The hands-on perspective is also beneficial to advanced-level students in fields from computer science and statistics to information science. 
650 0 |a Information storage and retrieval. 
650 0 |a Statistics . 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematics. 
650 0 |a Visualization. 
650 1 4 |a Information Storage and Retrieval.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18032 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17040 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Visualization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14034 
700 1 |a Ding, Ying.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rousseau, Ronald.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wolfram, Dietmar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319103761 
776 0 8 |i Printed edition:  |z 9783319103785 
776 0 8 |i Printed edition:  |z 9783319348636 
856 4 0 |u https://doi.org/10.1007/978-3-319-10377-8 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)