Developments and Retrospectives in Lie Theory Geometric and Analytic Methods /

This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those  workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics.  Many of the contrib...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Mason, Geoffrey. (Editor, http://id.loc.gov/vocabulary/relators/edt), Penkov, Ivan. (Editor, http://id.loc.gov/vocabulary/relators/edt), Wolf, Joseph A. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Developments in Mathematics, 37
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-09934-7
LEADER 05645nam a22006015i 4500
001 978-3-319-09934-7
003 DE-He213
005 20210615030009.0
007 cr nn 008mamaa
008 141112s2014 gw | s |||| 0|eng d
020 |a 9783319099347  |9 978-3-319-09934-7 
024 7 |a 10.1007/978-3-319-09934-7  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
245 1 0 |a Developments and Retrospectives in Lie Theory  |h [electronic resource] :  |b Geometric and Analytic Methods /  |c edited by Geoffrey Mason, Ivan Penkov, Joseph A. Wolf. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a IX, 268 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Developments in Mathematics,  |x 1389-2177 ;  |v 37 
505 0 |a Group gradings on Lie algebras and applications to geometry. II (Y. Bahturin, M. Goze, E. Remm) -- Harmonic analysis on homogeneous complex bounded domains and noncommutative geometry (P. Bieliavsky, V. Gayral, A. de Goursac, F. Spinnler) -- The radon transform and its dual for limits of symmetric spaces (J. Hilgert, G. Ólafsson) -- Cycle Connectivity and Automorphism Groups of Flag Domains (A. Huckleberry) -- Shintani functions, real spherical manifolds, and symmetry breaking operators (T. Kobayashi) -- Harmonic spinors on reductive homogeneous spaces (S. Mehdi, R. Zierau) -- Twisted Harish–Chandra sheaves and Whittaker modules: The nondegenerate case (D. Miličić, W. Soergel) -- Unitary representations of unitary groups (K.-H. Neeb) -- Weak splitting of quotients of Drinfeld and Heisenberg doubles (M. Yakimov). 
520 |a This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those  workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics.  Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theory, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods. This is the Geometric and Analytic Methods volume. The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research.  Most of the workshops have taken place at leading public and private universities in California, though on occasion workshops have taken place in Oregon, Louisiana and Utah.  Experts in representation theory/Lie theory from various parts of  the Americas, Europe and Asia have given talks at these meetings. The workshop series is robust, and the meetings continue on a quarterly basis.  Contributors to the Geometric and Analytic Methods volume: Y. Bahturin                                         D. Miličić P. Bieliavsky                                       K.-H. Neeb V. Gayral                                            G. Ólafsson A. de Goursac                                     E. Remm M. Goze                                             W. Soergel J. Hilgert                                             F. Spinnler A. Huckleberry                                    M. Yakimov T. Kobayashi                                       R. Zierau S. Mehdi  . 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Topological Groups, Lie Groups.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11132 
650 2 4 |a Algebraic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11019 
650 2 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
700 1 |a Mason, Geoffrey.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Penkov, Ivan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wolf, Joseph A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319099354 
776 0 8 |i Printed edition:  |z 9783319099330 
776 0 8 |i Printed edition:  |z 9783319348759 
830 0 |a Developments in Mathematics,  |x 1389-2177 ;  |v 37 
856 4 0 |u https://doi.org/10.1007/978-3-319-09934-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)