Differential Geometry Basic Notions and Physical Examples /

Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown...

Full description

Main Author: Epstein, Marcelo. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Mathematical Engineering,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-06920-3
LEADER 03233nam a22005415i 4500
001 978-3-319-06920-3
003 DE-He213
005 20210617163909.0
007 cr nn 008mamaa
008 140702s2014 gw | s |||| 0|eng d
020 |a 9783319069203  |9 978-3-319-06920-3 
024 7 |a 10.1007/978-3-319-06920-3  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Epstein, Marcelo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Differential Geometry  |h [electronic resource] :  |b Basic Notions and Physical Examples /  |c by Marcelo Epstein. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 139 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4732 
505 0 |a Topological constructs -- Physical illustrations -- Differential constructs -- Physical illustrations. 
520 |a Differential Geometry offers a concise introduction to some basic notions of modern differential geometry and their applications to solid mechanics and physics. Concepts such as manifolds, groups, fibre bundles and groupoids are first introduced within a purely topological framework. They are shown to be relevant to the description of space-time, configuration spaces of mechanical systems, symmetries in general, microstructure and local and distant symmetries of the constitutive response of continuous media. Once these ideas have been grasped at the topological level, the differential structure needed for the description of physical fields is introduced in terms of differentiable manifolds and principal frame bundles. These mathematical concepts are then illustrated with examples from continuum kinematics, Lagrangian and Hamiltonian mechanics, Cauchy fluxes and dislocation theory. This book will be useful for researchers and graduate students in science and engineering. 
650 0 |a Differential geometry. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Physics. 
650 1 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
650 2 4 |a Solid Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15010 
650 2 4 |a Classical Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P21018 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319069210 
776 0 8 |i Printed edition:  |z 9783319069197 
776 0 8 |i Printed edition:  |z 9783319357140 
830 0 |a Mathematical Engineering,  |x 2192-4732 
856 4 0 |u https://doi.org/10.1007/978-3-319-06920-3 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)