Invariant Probabilities of Transition Functions

The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in...

Full description

Main Author: Zaharopol, Radu. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Probability and Its Applications,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-05723-1
LEADER 04623nam a22005775i 4500
001 978-3-319-05723-1
003 DE-He213
005 20210617080417.0
007 cr nn 008mamaa
008 140627s2014 gw | s |||| 0|eng d
020 |a 9783319057231  |9 978-3-319-05723-1 
024 7 |a 10.1007/978-3-319-05723-1  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Zaharopol, Radu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Invariant Probabilities of Transition Functions  |h [electronic resource] /  |c by Radu Zaharopol. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 389 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 1431-7028 
505 0 |a Introduction -- 1.Transition Probabilities -- 2.Transition Functions -- 3.Vector Integrals and A.E. Convergence -- 4.Special Topics -- 5.The KBBY Ergodic Decomposition, Part I -- 6.The KBBY Ergodic Decomposition, Part II -- 7.Feller Transition Functions -- Appendices: A.Semiflows and Flows: Introduction -- B.Measures and Convolutions -- Bibliography -- Index. 
520 |a The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications. 
650 0 |a Operator theory. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Probabilities. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Measure theory. 
650 1 4 |a Operator Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12139 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Potential Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12163 
650 2 4 |a Measure and Integration.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319057224 
776 0 8 |i Printed edition:  |z 9783319057248 
776 0 8 |i Printed edition:  |z 9783319357768 
830 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u https://doi.org/10.1007/978-3-319-05723-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)