Analytic and Probabilistic Approaches to Dynamics in Negative Curvature

The work of E. Hopf and G.A. Hedlund, in the 1930s, on transitivity and ergodicity of the geodesic flow for hyperbolic surfaces, marked the beginning of the investigation of the statistical properties and stochastic behavior of the flow. The first central limit theorem for the geodesic flow was prov...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Dal'Bo, Françoise. (Editor, http://id.loc.gov/vocabulary/relators/edt), Peigné, Marc. (Editor, http://id.loc.gov/vocabulary/relators/edt), Sambusetti, Andrea. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Springer INdAM Series, 9
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-04807-9
LEADER 04414nam a22006015i 4500
001 978-3-319-04807-9
003 DE-He213
005 20210617200133.0
007 cr nn 008mamaa
008 140717s2014 gw | s |||| 0|eng d
020 |a 9783319048079  |9 978-3-319-04807-9 
024 7 |a 10.1007/978-3-319-04807-9  |2 doi 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
245 1 0 |a Analytic and Probabilistic Approaches to Dynamics in Negative Curvature  |h [electronic resource] /  |c edited by Françoise Dal'Bo, Marc Peigné, Andrea Sambusetti. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 138 p. 32 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer INdAM Series,  |x 2281-518X ;  |v 9 
520 |a The work of E. Hopf and G.A. Hedlund, in the 1930s, on transitivity and ergodicity of the geodesic flow for hyperbolic surfaces, marked the beginning of the investigation of the statistical properties and stochastic behavior of the flow. The first central limit theorem for the geodesic flow was proved in the 1960s by Y. Sinai for compact hyperbolic manifolds. Since then, strong relationships have been found between the fields of ergodic theory, analysis, and geometry. Different approaches and new tools have been developed to study the geodesic flow, including measure theory, thermodynamic formalism, transfer operators, Laplace operators, and Brownian motion. All these different points of view have led to a deep understanding of more general dynamical systems, in particular the so-called Anosov systems, with applications to geometric problems such as counting, equirepartition, mixing, and recurrence properties of the orbits. This book comprises two independent texts that provide a self-contained introduction to two different approaches to the investigation of hyperbolic dynamics. The first text, by S. Le Borgne, explains the method of martingales for the central limit theorem. This approach can be used in several situations, even for weakly hyperbolic flows, and the author presents a good number of examples and applications to equirepartition and mixing. The second text, by F. Faure and M. Tsujii, concerns the semiclassical approach, by operator theory: chaotic dynamics is described through the spectrum of the associated transfer operator, with applications to the asymptotic counting of periodic orbits. The book will be of interest for a broad audience, from PhD and Post-Doc students to experts working on geometry and dynamics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Probabilities. 
650 0 |a Operator theory. 
650 0 |a Hyperbolic geometry. 
650 0 |a Differential geometry. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Operator Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12139 
650 2 4 |a Hyperbolic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21030 
650 2 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
700 1 |a Dal'Bo, Françoise.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Peigné, Marc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sambusetti, Andrea.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319048086 
776 0 8 |i Printed edition:  |z 9783319048062 
776 0 8 |i Printed edition:  |z 9783319381176 
830 0 |a Springer INdAM Series,  |x 2281-518X ;  |v 9 
856 4 0 |u https://doi.org/10.1007/978-3-319-04807-9 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)