Data Analytics for Traditional Chinese Medicine Research

This contributed volume explores how data mining, machine learning, and similar statistical techniques can analyze the types of problems arising from Traditional Chinese Medicine (TCM) research. The book focuses on the study of clinical data and the analysis of herbal data. Challenges addressed incl...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Poon, Josiah. (Editor, http://id.loc.gov/vocabulary/relators/edt), K. Poon, Simon. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-03801-8
LEADER 04819nam a22005295i 4500
001 978-3-319-03801-8
003 DE-He213
005 20210622213619.0
007 cr nn 008mamaa
008 140219s2014 gw | s |||| 0|eng d
020 |a 9783319038018  |9 978-3-319-03801-8 
024 7 |a 10.1007/978-3-319-03801-8  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Data Analytics for Traditional Chinese Medicine Research  |h [electronic resource] /  |c edited by Josiah Poon, Simon K. Poon. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 248 p. 59 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword -- Searching for Evidence in Traditional Chinese Medicine Research: A Review and New Opportunities -- Causal Complexities of TCM Prescriptions: Understanding the underlying mechanisms of herbal formulation -- Medical Diagnosis by Using Machine Learning Techniques -- Network based deciphering of the mechanism of TCM -- Prescription Analysis and Mining -- Statistical Validation of TCM Syndrome Postulates in the Context of Depressive Patients -- Artificial Neural Network-based Chinese Medicine Diagnosis in Decision Support Manner and Herbal Ingredient Discoveries -- Chromatographic Fingerprinting and Chemometric Techniques for Quality Control of Herb Medicines -- A New Methodology for Uncovering the Bioactive Fractions in Herbal Medicine Using the Approach of Quantitative Pattern-Activity Relationship -- An Innovative and Comprehensive Approach in Studying the Complex Synergistic Interactions Among Herbs in Chinese Herbal Formulae -- Data mining in real-world traditional Chinese medicine clinical data warehouse -- TCM data mining and quality evaluation with SAPHRON(TM) system -- An overview on evidence-based medicine and medical informatics in traditional Chinese medicine practice. 
520 |a This contributed volume explores how data mining, machine learning, and similar statistical techniques can analyze the types of problems arising from Traditional Chinese Medicine (TCM) research. The book focuses on the study of clinical data and the analysis of herbal data. Challenges addressed include diagnosis, prescription analysis, ingredient discoveries, network based mechanism deciphering, pattern-activity relationships, and medical informatics. Each author demonstrates how they made use of machine learning, data mining, statistics and other analytic techniques to resolve their research challenges, how successful if these techniques were applied, any insight noted and how these insights define the most appropriate future work to be carried out. Readers are given an opportunity to understand the complexity of diagnosis and treatment decision, the difficulty of modeling of efficacy in terms of herbs, the identification of constituent compounds in an herb, the relationship between these compounds and biological outcome so that evidence-based predictions can be made. Drawing on a wide range of experienced contributors, Data Analytics for Traditional Chinese Medicine Research is a valuable reference for professionals and researchers working in health informatics and data mining. The techniques are also useful for biostatisticians and health practitioners interested in traditional medicine and data analytics. 
650 0 |a Data mining. 
650 0 |a Health informatics. 
650 0 |a Pattern recognition. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Health Informatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/H28009 
650 2 4 |a Health Informatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23060 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
700 1 |a Poon, Josiah.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a K. Poon, Simon.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319038025 
776 0 8 |i Printed edition:  |z 9783319038001 
776 0 8 |i Printed edition:  |z 9783319346298 
856 4 0 |u https://doi.org/10.1007/978-3-319-03801-8 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)