Introduction to Quasi-Monte Carlo Integration and Applications

This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory....

Full description

Main Authors: Leobacher, Gunther. (Author, http://id.loc.gov/vocabulary/relators/aut), Pillichshammer, Friedrich. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Edition:1st ed. 2014.
Series:Compact Textbooks in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-03425-6
LEADER 03402nam a22005175i 4500
001 978-3-319-03425-6
003 DE-He213
005 20210618062802.0
007 cr nn 008mamaa
008 140912s2014 gw | s |||| 0|eng d
020 |a 9783319034256  |9 978-3-319-03425-6 
024 7 |a 10.1007/978-3-319-03425-6  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Leobacher, Gunther.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Quasi-Monte Carlo Integration and Applications  |h [electronic resource] /  |c by Gunther Leobacher, Friedrich Pillichshammer. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XII, 195 p. 21 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Compact Textbooks in Mathematics,  |x 2296-4568 
505 0 |a Preface -- Notation -- 1 Introduction -- 2 Uniform Distribution Modulo One -- 3 QMC Integration in Reproducing Kernel Hilbert Spaces -- 4 Lattice Point Sets -- 5 (t, m, s)-nets and (t, s)-Sequences -- 6 A Short Discussion of the Discrepancy Bounds -- 7 Foundations of Financial Mathematics -- 8 Monte Carlo and Quasi-Monte Carlo Simulation -- Bibliography -- Index. 
520 |a This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science. 
650 0 |a Number theory. 
650 0 |a Numerical analysis. 
650 0 |a Economics, Mathematical . 
650 1 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Quantitative Finance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13062 
700 1 |a Pillichshammer, Friedrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319034263 
776 0 8 |i Printed edition:  |z 9783319034249 
830 0 |a Compact Textbooks in Mathematics,  |x 2296-4568 
856 4 0 |u https://doi.org/10.1007/978-3-319-03425-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)