Cohomological Aspects in Complex Non-Kähler Geometry

In these notes, we provide a summary of recent results on the cohomological properties of compact complex manifolds not endowed with a Kähler structure. On the one hand, the large number of developed analytic techniques makes it possible to prove strong cohomological properties for compact Kähler ma...

Full description

Main Author: Angella, Daniele. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Lecture Notes in Mathematics, 2095
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-02441-7
LEADER 02978nam a22004935i 4500
001 978-3-319-02441-7
003 DE-He213
005 20210702074440.0
007 cr nn 008mamaa
008 131121s2014 gw | s |||| 0|eng d
020 |a 9783319024417  |9 978-3-319-02441-7 
024 7 |a 10.1007/978-3-319-02441-7  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Angella, Daniele.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cohomological Aspects in Complex Non-Kähler Geometry  |h [electronic resource] /  |c by Daniele Angella. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XXV, 262 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2095 
505 0 |a Preliminaries on (almost-) complex manifolds -- Cohomology of complex manifolds -- Cohomology of nilmanifolds -- Cohomology of almost-complex manifolds -- References. 
520 |a In these notes, we provide a summary of recent results on the cohomological properties of compact complex manifolds not endowed with a Kähler structure. On the one hand, the large number of developed analytic techniques makes it possible to prove strong cohomological properties for compact Kähler manifolds. On the other, in order to further investigate any of these properties, it is natural to look for manifolds that do not have any Kähler structure. We focus in particular on studying Bott-Chern and Aeppli cohomologies of compact complex manifolds. Several results concerning the computations of Dolbeault and Bott-Chern cohomologies on nilmanifolds are summarized, allowing readers to study explicit examples. Manifolds endowed with almost-complex structures, or with other special structures (such as, for example, symplectic, generalized-complex, etc.), are also considered. 
650 0 |a Differential geometry. 
650 0 |a Functions of complex variables. 
650 1 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
650 2 4 |a Several Complex Variables and Analytic Spaces.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12198 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319024424 
776 0 8 |i Printed edition:  |z 9783319024400 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2095 
856 4 0 |u https://doi.org/10.1007/978-3-319-02441-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)