Functional Imaging and Modeling of the Heart 11th International Conference, FIMH 2021, Stanford, CA, USA, June 21-25, 2021, Proceedings /

This book constitutes the refereed proceedings of the 11th International Conference on Functional Imaging and Modeling of the Heart, which took place online during June 21-24, 2021, organized by the University of Stanford. The 65 revised full papers were carefully reviewed and selected from 68 submi...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Ennis, Daniel B. (Editor, http://id.loc.gov/vocabulary/relators/edt), Perotti, Luigi E. (Editor, http://id.loc.gov/vocabulary/relators/edt), Wang, Vicky Y. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 12738
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-78710-3
LEADER 10366nam a22006135i 4500
001 978-3-030-78710-3
003 DE-He213
005 20210624150917.0
007 cr nn 008mamaa
008 210617s2021 gw | s |||| 0|eng d
020 |a 9783030787103  |9 978-3-030-78710-3 
024 7 |a 10.1007/978-3-030-78710-3  |2 doi 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Functional Imaging and Modeling of the Heart  |h [electronic resource] :  |b 11th International Conference, FIMH 2021, Stanford, CA, USA, June 21-25, 2021, Proceedings /  |c edited by Daniel B. Ennis, Luigi E. Perotti, Vicky Y. Wang. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XVIII, 690 p. 326 illus., 301 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 12738 
505 0 |a Population-based personalization of geometric models of myocardial infarction -- Impact of Image Resolution and Resampling on Motion Tracking of the Left Chambers from Cardiac Scans -- Shape Constraints in Deep Learning for Robust 2D Echocardiography Analysis -- Image-Derived Geometric Characteristics Predict Abdominal Aortic Aneurysm Growth in a Machine Learning Model -- Cardiac MRI Left Ventricular Segmentation and Function Quantification Using Pre-trained Neural Networks -- Three-Dimensional Embedded Attentive RNN (3D-EAR) Segmentor for Left Ventricle Delineation from Myocardial Velocity Mapping -- Whole Heart Anatomical Refinement from CCTA using Extrapolation and Parcellation -- Optimisation of Left Atrial Feature Tracking using Retrospective Gated Computed Tomography Images -- Assessment of geometric models for the approximation of aorta cross-sections -- Improved High Frame Rate Speckle Tracking for Echocardiography -- Efficient Model Monitoring for Quality Control in Cardiac Image Segmentation -- Domain adaptation for automatic aorta segmentation of 4D flow magnetic resonance imaging data from multiple vendor scanners -- A multi-step machine learning approach for short axis MR images segmentation -- Diffusion biomarkers in chronic myocardial infarction -- Spatially constrained Deep Learning approach for myocardial T1 mapping -- A methodology for accessing the local arrangement of the sheetlets that make up the extracellular heart tissue -- A High-Fidelity 3D Micromechanical Model of Ventricular Myocardium -- Quantitative Interpretation of Myocardial Fiber Structure in the Left and Right Ventricle of an Equine Heart using Diffusion Tensor Cardiovascular Magnetic Resonance Imaging -- Analysis of Location-Dependent Cardiomyocyte Branching -- Systematic Study of Joint Influence of Angular Resolution and Noise in Cardiac Diffusion Tensor Imaging -- Arbitrary Point Tracking with Machine Learning to Measure Cardiac Strain in Tagged MRI -- Investigation of the impact of normalization on the study of interactions between myocardial shape and deformation -- Reproducibility of Left Ventricular CINE DENSE Strain in Pediatric Subjects with Duchenne Muscular Dystrophy -- M-SiSSR: Regional Endocardial Function using Multilabel Simultaneous Subdivision Surface Registration -- CNN-based Cardiac Motion Extraction to Generate Deformable Geometric Left Ventricle Myocardial Models from Cine MRI -- Multiscale Graph Convolutional Networks for Cardiac Motion Analysis -- An image registration framework to estimate 3D myocardial strains from cine cardiac MRI in mice -- Sensitivity of Myocardial Stiffness Estimates to Inter-observer Variability in LV Geometric Modelling -- A computational approach on sensitivity of left ventricular wall strains to fiber orientation -- A Framework for Evaluating Myocardial Stiffness Using 3D-Printed Heart Phantoms -- Modeling patient-specific periaortic interactions with static and dynamic structures using a moving heterogeneous elastic foundation boundary condition -- An Exploratory Assessment of Focused Septal Growth in Hypertrophic Cardiomyopathy -- Parameter Estimation in a Rule-Based Fiber Orientation model from End Systolic Strains Using the Reduced Order Unscented Kalman Filter -- Effects of fibre orientation on electrocardiographic and mechanical functions in a computational human biventricular model -- Model-assisted time-synchronization of cardiac MR image and catheter pressure data -- From clinical imaging to patient-specific computational model: Rapid adaptation of the Living Heart Human Model to a case of aortic stenosis -- Cardiac support for the right ventricle: effects of timing on hemodynamics-biomechanics tradeoff -- In vivo pressure-volume loops and chamber stiffness estimation using real-time 3D echocardiography and left ventricular catheterization – application to post-heart transplant patients -- In silico mapping of the omecamtiv mecarbil effects from the sarcomere to the whole-heart and back again -- High-Speed Simulation of the 3D Behavior of Myocardium Using a Neural Network PDE Approach -- On the interrelationship between left ventricle infarction geometry and ischemic mitral regurgitation grade -- Cardiac modeling for Multisystem Inflammatory Syndrome in Children (MIS-C, PIMS-TS) -- Personal-by-design: a 3D Electromechanical Model of the Heart Tailored for Personalisation -- Scar-Related Ventricular Arrhythmia Prediction from Imaging using Explainable Deep Learning -- Deep Adaptive Electrocardiographic Imaging with Generative Forward Model for Error Reduction -- EP-Net 2.0: Out-of-Domain Generalisation for Deep Learning Models of Cardiac Electrophysiology -- Simultaneous Multi-Heartbeat ECGI Solution with a Time-Varying Forward Model: a Joint Inverse Formulation -- The Effect of Modeling Assumptions on the ECG in Monodomain and Bidomain Simulations -- Uncertainty Quantification of the Effects of Segmentation Variability in ECGI -- Spiral Waves Generation using an Eikonal-reaction Cardiac Electrophysiology Model -- Simplified Electrophysiology Modeling Framework to Assess Ventricular Arrhythmia Risk in Infarcted Patients -- Sensitivity analysis of a smooth muscle cell electrophysiological model. -- A volume source method for solving ECGI inverse problem -- Fast and Accurate Uncertainty Quantification for the ECG with Random Electrodes Location -- Quantitative Hemodynamics in Aortic Dissection: Comparing in vitro MRI with FSI Simulation in a Compliant Model -- 3-D Intraventricular Vector Flow mapping Using Triplane Doppler Echo -- The role of extra-coronary vascular conditions that affect coronary fractional flow reserve estimation. -- In-silico analysis of the influence of pulmonary vein configuration on left atrial haemodynamics and thrombus formation in a large cohort -- Shape analysis and computational fluid simulations to assess feline left atrial function and thrombogenesis -- Using the Universal Atrial Coordinate system for MRI and electroanatomic data registration in patient-specific left atrial model construction and simulation -- Geometric Deep Learning for the Assessment of Thrombosis Risk in the Left Atrial Appendage -- Learning atrial fiber orientations and conductivity tensors from intracardiac maps using physics-informed neural networks -- The Effect of Ventricular Myofibre Orientation on Atrial Dynamics -- Intra-Cardiac Signatures of Atrial Arrhythmias Identified By Machine Learning and Traditional Features -- Computational Modelling of the Role of Atrial Fibrillation on Cerebral Blood Perfusion. 
520 |a This book constitutes the refereed proceedings of the 11th International Conference on Functional Imaging and Modeling of the Heart, which took place online during June 21-24, 2021, organized by the University of Stanford. The 65 revised full papers were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: advanced cardiac and cardiovascular image processing; cardiac microstructure: measures and models; novel approaches to measuring heart deformation; cardiac mechanics: measures and models; translational cardiac mechanics; modeling electrophysiology, ECG, and arrhythmia; cardiovascular flow: measures and models; and atrial microstructure, modeling, and thrombosis prediction. 
650 0 |a Optical data processing. 
650 0 |a Computer communication systems. 
650 0 |a Machine learning. 
650 0 |a Application software. 
650 0 |a Computer science—Mathematics. 
650 1 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Computer Communication Networks.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I13022 
650 2 4 |a Machine Learning.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21010 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23028 
650 2 4 |a Math Applications in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17044 
700 1 |a Ennis, Daniel B.  |e editor.  |0 (orcid)0000-0001-7435-1311  |1 https://orcid.org/0000-0001-7435-1311  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Perotti, Luigi E.  |e editor.  |0 (orcid)0000-0002-9010-2144  |1 https://orcid.org/0000-0002-9010-2144  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wang, Vicky Y.  |e editor.  |0 (orcid)0000-0003-0895-3132  |1 https://orcid.org/0000-0003-0895-3132  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030787097 
776 0 8 |i Printed edition:  |z 9783030787110 
830 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 12738 
856 4 0 |u https://doi.org/10.1007/978-3-030-78710-3 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)