Advances in Knowledge Discovery and Data Mining 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part III /

The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021. The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Karlapalem, Kamal. (Editor, http://id.loc.gov/vocabulary/relators/edt), Cheng, Hong. (Editor, http://id.loc.gov/vocabulary/relators/edt), Ramakrishnan, Naren. (Editor, http://id.loc.gov/vocabulary/relators/edt), Agrawal, R. K. (Editor, http://id.loc.gov/vocabulary/relators/edt), Reddy, P. Krishna. (Editor, http://id.loc.gov/vocabulary/relators/edt), Srivastava, Jaideep. (Editor, http://id.loc.gov/vocabulary/relators/edt), Chakraborty, Tanmoy. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Lecture Notes in Artificial Intelligence ; 12714
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-75768-7
LEADER 06933nam a22006615i 4500
001 978-3-030-75768-7
003 DE-He213
005 20210625093735.0
007 cr nn 008mamaa
008 210507s2021 gw | s |||| 0|eng d
020 |a 9783030757687  |9 978-3-030-75768-7 
024 7 |a 10.1007/978-3-030-75768-7  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Advances in Knowledge Discovery and Data Mining  |h [electronic resource] :  |b 25th Pacific-Asia Conference, PAKDD 2021, Virtual Event, May 11–14, 2021, Proceedings, Part III /  |c edited by Kamal Karlapalem, Hong Cheng, Naren Ramakrishnan, R. K. Agrawal, P. Krishna Reddy, Jaideep Srivastava, Tanmoy Chakraborty. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XXIII, 434 p. 142 illus., 117 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 12714 
505 0 |a Representation Learning and Embedding -- Episode Adaptive Embedding Networks for Few-shot Learning -- Universal Representation for Code -- Self-supervised Adaptive Aggregator Learning on Graph -- A Fast Algorithm for Simultaneous Sparse Approximation -- STEPs-RL: Speech-Text Entanglement for Phonetically Sound Representation Learning -- RW-GCN: Training Graph Convolution Networks with biased random walk for Semi-Supervised Classification -- Loss-aware Pattern Inference: A Correction on the Wrongly Claimed Limitations of Embedding Models -- SST-GNN: Simplified Spatio-temporal Traffic forecasting model using Graph Neural Network -- VIKING: Adversarial Attack on Network Embeddings via Supervised Network Poisoning -- Self-supervised Graph Representation Learning with Variational Inference -- Manifold Approximation and Projection by Maximizing Graph Information -- Learning Attention-based Translational Knowledge Graph Embedding via Nonlinear Dynamic Mapping -- Multi-Grained Dependency Graph Neural Network for Chinese Open Information Extraction -- Human-Understandable Decision Making for Visual Recognition -- LightCAKE: A Lightweight Framework for Context-Aware Knowledge Graph Embedding -- Transferring Domain Knowledge with an Adviser in Continuous Tasks -- Inferring Hierarchical Mixture Structures: A Bayesian Nonparametric Approach -- Quality Control for Hierarchical Classification with Incomplete Annotations -- Learning from Data -- Learning Discriminative Features using Multi-label Dual Space -- AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering -- BanditRank: Learning to Rank Using Contextual Bandits -- A compressed and accelerated SegNet for plant leaf disease segmentation: A Differential Evolution based approach -- Meta-Context Transformers for Domain-Specific Response Generation -- A Multi-task Kernel Learning Algorithm for Survival Analysis -- Meta-data Augmentation based Search Strategy through Generative Adversarial Network for AutoML Model Selection -- Tree-Capsule: Tree-Structured Capsule Network for Improving Relation Extraction -- Rule Injection-based Generative Adversarial Imitation Learning for Knowledge Graph Reasoning -- Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition -- Reinforced Natural Language Inference for Distantly Supervised Relation Classification -- SaGCN: Structure-aware Graph Convolution Network for Document-level Relation Extraction -- Addressing the class imbalance problem in medical image segmentation via accelerated Tversky loss function -- Incorporating Relational Knowledge in Explainable Fake News Detection -- Incorporating Syntactic Information into Relation Representations for Enhanced Relation Extraction. 
520 |a The 3-volume set LNAI 12712-12714 constitutes the proceedings of the 25th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2021, which was held during May 11-14, 2021. The 157 papers included in the proceedings were carefully reviewed and selected from a total of 628 submissions. They were organized in topical sections as follows: Part I: Applications of knowledge discovery and data mining of specialized data; Part II: Classical data mining; data mining theory and principles; recommender systems; and text analytics; Part III: Representation learning and embedding, and learning from data. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 0 |a Algorithms. 
650 0 |a Education—Data processing. 
650 0 |a Computer science—Mathematics. 
650 0 |a Optical data processing. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23028 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16021 
650 2 4 |a Computers and Education.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I24032 
650 2 4 |a Mathematics of Computing.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17001 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
700 1 |a Karlapalem, Kamal.  |e editor.  |0 (orcid)0000-0003-2528-7979  |1 https://orcid.org/0000-0003-2528-7979  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cheng, Hong.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ramakrishnan, Naren.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Agrawal, R. K.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Reddy, P. Krishna.  |e editor.  |0 (orcid)0000-0003-1238-5174  |1 https://orcid.org/0000-0003-1238-5174  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Srivastava, Jaideep.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Chakraborty, Tanmoy.  |e editor.  |0 (orcid)0000-0002-0210-0369  |1 https://orcid.org/0000-0002-0210-0369  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030757670 
776 0 8 |i Printed edition:  |z 9783030757694 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 12714 
856 4 0 |u https://doi.org/10.1007/978-3-030-75768-7 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)