An Invitation to Analytic Combinatorics From One to Several Variables /

This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra softwar...

Full description

Main Author: Melczer, Stephen. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-67080-1
LEADER 03705nam a22005415i 4500
001 978-3-030-67080-1
003 DE-He213
005 20210707070928.0
007 cr nn 008mamaa
008 201222s2021 gw | s |||| 0|eng d
020 |a 9783030670801  |9 978-3-030-67080-1 
024 7 |a 10.1007/978-3-030-67080-1  |2 doi 
050 4 |a QA150-272 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT008000  |2 bisacsh 
072 7 |a PBD  |2 thema 
082 0 4 |a 511.1  |2 23 
100 1 |a Melczer, Stephen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Invitation to Analytic Combinatorics  |h [electronic resource] :  |b From One to Several Variables /  |c by Stephen Melczer. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XVIII, 418 p. 45 illus., 36 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,  |x 0943-853X 
505 0 |a Introduction -- Background and Motivation -- Smooth ACSV and Applications -- Non-Smooth ACSV. 
520 |a This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra software of use to researchers in these domains. After a survey of current results and open problems on decidability in enumerative combinatorics, the text shows how the cutting edge of this research is the new domain of Analytic Combinatorics in Several Variables (ACSV). The remaining chapters of the text alternate between a pedagogical development of the theory, applications (including the resolution by this author of conjectures in lattice path enumeration which resisted several other approaches), and the development of algorithms. The final chapters in the text show, through examples and general theory, how results from stratified Morse theory can help refine some of these computability questions. Complementing the written presentation are over 50 worksheets for the SageMath and Maple computer algebra systems working through examples in the text. 
650 0 |a Discrete mathematics. 
650 0 |a Computer science—Mathematics. 
650 0 |a Physics. 
650 0 |a Algorithms. 
650 1 4 |a Discrete Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M29000 
650 2 4 |a Symbolic and Algebraic Manipulation.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17052 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
650 2 4 |a Algorithms.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14018 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030670795 
776 0 8 |i Printed edition:  |z 9783030670818 
776 0 8 |i Printed edition:  |z 9783030670825 
830 0 |a Texts & Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria,  |x 0943-853X 
856 4 0 |u https://doi.org/10.1007/978-3-030-67080-1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)