Machine Learning for Medical Image Reconstruction Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings /

This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and se...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Deeba, Farah. (Editor, http://id.loc.gov/vocabulary/relators/edt), Johnson, Patricia. (Editor, http://id.loc.gov/vocabulary/relators/edt), Würfl, Tobias. (Editor, http://id.loc.gov/vocabulary/relators/edt), Ye, Jong Chul. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 12450
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-61598-7
LEADER 05015nam a22006015i 4500
001 978-3-030-61598-7
003 DE-He213
005 20210624211513.0
007 cr nn 008mamaa
008 201019s2020 gw | s |||| 0|eng d
020 |a 9783030615987  |9 978-3-030-61598-7 
024 7 |a 10.1007/978-3-030-61598-7  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning for Medical Image Reconstruction  |h [electronic resource] :  |b Third International Workshop, MLMIR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 8, 2020, Proceedings /  |c edited by Farah Deeba, Patricia Johnson, Tobias Würfl, Jong Chul Ye. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a VIII, 163 p. 76 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 12450 
505 0 |a Deep Learning for Magnetic Resonance Imaging -- 3D FLAT: Feasible Learned Acquisition Trajectories for Accelerated MRI -- Deep Parallel MRI Reconstruction Network Without Coil Sensitivities -- Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data -- Deep Recurrent Partial Fourier Reconstruction in Diffusion MRI -- Model-based Learning for Quantitative Susceptibility Mapping -- Learning Bloch Simulations for MR Fingerprinting by Invertible Neural Networks -- Weakly-supervised Learning for Single-step Quantitative Susceptibility Mapping -- Data-Consistency in Latent Space and Online Update Strategy to Guide GAN for Fast MRI Reconstruction -- Extending LOUPE for K-space Under-sampling Pattern Optimization in Multi-coil MRI -- AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis -- Deep Learning for General Image Reconstruction -- A deep prior approach to magnetic particle imaging -- End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones From Bi-Planar X-Ray Images -- Cellular/Vascular Reconstruction using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation -- Improving PET-CT Image Segmentation via Deep Multi-Modality Data Augmentation -- Stain Style Transfer of Histopathology Images Via Structure-Preserved Generative Learning. 
520 |a This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning for Medical Reconstruction, MLMIR 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The workshop was held virtually. The 15 papers presented were carefully reviewed and selected from 18 submissions. The papers are organized in the following topical sections: deep learning for magnetic resonance imaging and deep learning for general image reconstruction. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Application software. 
650 0 |a Education—Data processing. 
650 0 |a Bioinformatics. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23028 
650 2 4 |a Computers and Education.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I24032 
650 2 4 |a Computational Biology/Bioinformatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23050 
700 1 |a Deeba, Farah.  |e editor.  |0 (orcid)0000-0001-9217-5032  |1 https://orcid.org/0000-0001-9217-5032  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Johnson, Patricia.  |e editor.  |0 (orcid)0000-0003-1547-9969  |1 https://orcid.org/0000-0003-1547-9969  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Würfl, Tobias.  |e editor.  |0 (orcid)0000-0001-9086-0896  |1 https://orcid.org/0000-0001-9086-0896  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ye, Jong Chul.  |e editor.  |0 (orcid)0000-0001-9763-9609  |1 https://orcid.org/0000-0001-9763-9609  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030615970 
776 0 8 |i Printed edition:  |z 9783030615994 
830 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 12450 
856 4 0 |u https://doi.org/10.1007/978-3-030-61598-7 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)