Artificial Neural Networks in Pattern Recognition 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings /

This book constitutes the refereed proceedings of the 9th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2020, held in Winterthur, Switzerland, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 22 revised full papers p...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Schilling, Frank-Peter. (Editor, http://id.loc.gov/vocabulary/relators/edt), Stadelmann, Thilo. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Lecture Notes in Artificial Intelligence ; 12294
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-58309-5
LEADER 05155nam a22005655i 4500
001 978-3-030-58309-5
003 DE-He213
005 20210623234923.0
007 cr nn 008mamaa
008 200903s2020 gw | s |||| 0|eng d
020 |a 9783030583095  |9 978-3-030-58309-5 
024 7 |a 10.1007/978-3-030-58309-5  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Artificial Neural Networks in Pattern Recognition  |h [electronic resource] :  |b 9th IAPR TC3 Workshop, ANNPR 2020, Winterthur, Switzerland, September 2–4, 2020, Proceedings /  |c edited by Frank-Peter Schilling, Thilo Stadelmann. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XI, 306 p. 205 illus., 114 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence ;  |v 12294 
505 0 |a Deep Learning Methods for Image Guidance in Radiation Therapy Intentional Image Similarity Search -- Sttructured (De)composable Representations Trained with Neural Networks -- Long Distance Relationships without Time Travel: Boosting the Performance of a Sparse Predictive Autoencoder in Sequence Modeling -- Improving Accuracy and Efficiency of Object Detection Algorithms using Multiscale Feature Aggregation Plugins -- Abstract Echo State Networks -- Minimal Complexity Support Vector Machines -- Named Entity Disambiguation at Scale -- Geometric Attention for Prediction of Differential Properties in 3D Point Clouds -- How (Not) to Measure Bias in Face Recognition Networks.-Feature Extraction: A Time Window Analysis based on the X-ITE Pain Database -- Pain Intensity Recognition - An Analysis of Short-Time Sequences in a Real-World Scenario -- A deep learning approach for efficient registration of dual view mammography -- Deep Transfer Learning for Texture Classification in Colorectal Cancer Histology -- Applications of Generative Adversarial Networks to Dermatologic Imaging -- Typing Plasmids with Distributed Sequence Representation -- KP-YOLO: a modification of YOLO algorithm for the keypoint-based detection of QR Codes -- Using Mask R-CNN for Image-Based Wear Classification of Solid Carbide Milling and Drilling Tools -- A Hybrid Deep Learning Approach For Forecasting Air Temperature -- Using CNNs to optimize numerical simulations in geotechnical engineering -- Going for 2D or 3D? Investigating various Machine Learning Approaches for Peach Variety Identification -- A Transfer Learning End-to-End Arabic Text-To-Speech (TTS) Deep Architecture -- ML-Based Trading Models: An investigation during COVID-19 pandemic crisis -- iNNvestigate-GUI - Explaining Neural Networks Through an Interactive Visualization Tool. 
520 |a This book constitutes the refereed proceedings of the 9th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2020, held in Winterthur, Switzerland, in September 2020. The conference was held virtually due to the COVID-19 pandemic. The 22 revised full papers presented were carefully reviewed and selected from 34 submissions. The papers present and discuss the latest research in all areas of neural network-and machine learning-based pattern recognition. They are organized in two sections: learning algorithms and architectures, and applications. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Data mining. 
650 0 |a Pattern recognition. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22005 
700 1 |a Schilling, Frank-Peter.  |e editor.  |0 (orcid)0000-0002-7763-2140  |1 https://orcid.org/0000-0002-7763-2140  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stadelmann, Thilo.  |e editor.  |0 (orcid)0000-0002-3784-0420  |1 https://orcid.org/0000-0002-3784-0420  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030583088 
776 0 8 |i Printed edition:  |z 9783030583101 
830 0 |a Lecture Notes in Artificial Intelligence ;  |v 12294 
856 4 0 |u https://doi.org/10.1007/978-3-030-58309-5 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)