Computer Vision for X-Ray Testing Imaging, Systems, Image Databases, and Algorithms /

Building on its strengths as a uniquely accessible textbook combining computer vision and X-ray testing, this enhanced second edition now firmly addresses core developments in deep learning and vision, providing numerous examples and functions using the Python language. Covering complex topics in an...

Full description

Main Authors: Mery, Domingo. (Author, http://id.loc.gov/vocabulary/relators/aut), Pieringer, Christian. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:2nd ed. 2021.
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-56769-9
LEADER 04719nam a22005655i 4500
001 978-3-030-56769-9
003 DE-He213
005 20210622112353.0
007 cr nn 008mamaa
008 201221s2021 gw | s |||| 0|eng d
020 |a 9783030567699  |9 978-3-030-56769-9 
024 7 |a 10.1007/978-3-030-56769-9  |2 doi 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
100 1 |a Mery, Domingo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computer Vision for X-Ray Testing  |h [electronic resource] :  |b Imaging, Systems, Image Databases, and Algorithms /  |c by Domingo Mery, Christian Pieringer. 
250 |a 2nd ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XXVI, 456 p. 420 illus., 356 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Building on its strengths as a uniquely accessible textbook combining computer vision and X-ray testing, this enhanced second edition now firmly addresses core developments in deep learning and vision, providing numerous examples and functions using the Python language. Covering complex topics in an easy-to-understand way, without requiring any prior knowledge in the field, the book provides a concise review of the key methodologies in computer vision for solving important problems in industrial radiology. The theoretical coverage is strengthened with easily written code examples that the reader can modify when developing new functions for X-ray testing. Topics and features: Describes the core techniques for image processing used in X-ray testing, including image filtering, edge detection, image segmentation and image restoration Incorporates advances in deep learning, including aspects regarding convolutional neural networks, transfer learning, and generative adversarial networks Provides more than 65 examples in Python, and is supported by an associated website, including a database of X-ray images and a freely available Matlab toolbox Includes new advances in simulation approaches for baggage inspection, simulated X-ray imaging, and simulated structures (such as defects and threat objects) Presents a range of different representations for X-ray images, explaining how these enable new features to be extracted from the original image Examines a range of known X-ray image classifiers and classification strategies, and techniques for estimating the accuracy of a classifier Reviews a variety of applications for X-ray testing, from industrial inspection and baggage screening to the quality control of natural products This classroom-tested and hands-on text/guidebook is ideal for advanced undergraduates, graduates, and professionals interested in practically applying image processing, pattern recognition and computer vision techniques for non-destructive quality testing and security inspection. Dr. Domingo Mery is a Full Professor at the Machine Intelligence Group (GRIMA) of the Department of Computer Sciences, and Director of Research and Innovation at the School of Engineering, at the Pontifical Catholic University of Chile, Santiago, Chile. Dr. Christian Pieringer is an Adjunct Instructor at the same institution. 
650 0 |a Optical data processing. 
650 0 |a Quality control. 
650 0 |a Reliability. 
650 0 |a Industrial safety. 
650 0 |a Machine learning. 
650 0 |a Computer simulation. 
650 1 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Quality Control, Reliability, Safety and Risk.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T22032 
650 2 4 |a Machine Learning.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21010 
650 2 4 |a Simulation and Modeling.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I19000 
700 1 |a Pieringer, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030567682 
776 0 8 |i Printed edition:  |z 9783030567705 
776 0 8 |i Printed edition:  |z 9783030567712 
856 4 0 |u https://doi.org/10.1007/978-3-030-56769-9 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)