Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach

This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into fo...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Hassanien, Aboul-Ella. (Editor, http://id.loc.gov/vocabulary/relators/edt), Dey, Nilanjan. (Editor, http://id.loc.gov/vocabulary/relators/edt), Elghamrawy, Sally. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Studies in Big Data, 78
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-55258-9
LEADER 05043nam a22006255i 4500
001 978-3-030-55258-9
003 DE-He213
005 20210628135200.0
007 cr nn 008mamaa
008 201012s2020 gw | s |||| 0|eng d
020 |a 9783030552589  |9 978-3-030-55258-9 
024 7 |a 10.1007/978-3-030-55258-9  |2 doi 
050 4 |a TA345-345.5 
072 7 |a UN  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UN  |2 thema 
072 7 |a TB  |2 thema 
082 0 4 |a 620.00285  |2 23 
245 1 0 |a Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach  |h [electronic resource] /  |c edited by Aboul-Ella Hassanien, Nilanjan Dey, Sally Elghamrawy. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XI, 307 p. 169 illus., 130 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 78 
505 0 |a Coronavirus Spreading Forecasts based on Susceptible-Infectious- Recovered and Linear Regression Model -- Virus Graph and COVID-19 Pandemic: A Graph Theory Approach -- Nonparametric Analysis of Tracking Data in the Context of COVID-19 Pandemic -- Visualization and prediction of trends of Covid-19 pandemic during early outbreak in India using DNN and SVR -- The Detection of COVID-19 in CT Medical Images: A Deep Learning Approach -- COVID-19 Data Analysis and Innovative approach in Prediction of Cases -- Detection of COVID-19 using Chest Radiographs with Intelligent Deployment Architecture -- COVID-19 Diagnostics from the Chest X-Ray Image Using Corner-Based Weber Local Descriptor -- Why are Generative Adversarial Networks Vital for Deep Neural Networks? A Case Study on COVID-19 Chest X-Ray Images -- Artificial intelligence against COVID-19: A meta-analysis of current research -- Insights of Artificial Intelligence to Stop Spread of COVID-19 -- AI based Covid19 analysis-A pragmatic approach -- Artificial Intelligence and Psychosocial Support during the COVID-19 Outbreak -- Role of The Accurate Detection of Core Body Temperature in The Early Detection of Coronavirus -- The effect Coronavirus Pendamic on Education into Electronic Multi-Modal Smart Education -- An H2O’s Deep Learning-inspired model based on Big Data analytics for Coronavirus Disease (COVID-19) Diagnosis -- Coronavirus (COVID-19) Classification using Deep Features Fusion and Ranking Technique -- Stacking Deep Learning for Early COVID-19 Vision Diagnosis. 
520 |a This book includes research articles and expository papers on the applications of artificial intelligence and big data analytics to battle the pandemic. In the context of COVID-19, this book focuses on how big data analytic and artificial intelligence help fight COVID-19. The book is divided into four parts. The first part discusses the forecasting and visualization of the COVID-19 data. The second part describes applications of artificial intelligence in the COVID-19 diagnosis of chest X-Ray imaging. The third part discusses the insights of artificial intelligence to stop spread of COVID-19, while the last part presents deep learning and big data analytics which help fight the COVID-19. . 
650 0 |a Engineering—Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Biomedical engineering. 
650 0 |a Epidemiology. 
650 0 |a Big data. 
650 1 4 |a Data Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11040 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 
650 2 4 |a Epidemiology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/H63000 
650 2 4 |a Big Data.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I29120 
700 1 |a Hassanien, Aboul-Ella.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Dey, Nilanjan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Elghamrawy, Sally.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030552572 
776 0 8 |i Printed edition:  |z 9783030552596 
776 0 8 |i Printed edition:  |z 9783030552602 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 78 
856 4 0 |u https://doi.org/10.1007/978-3-030-55258-9 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)