Guide to Intelligent Data Science How to Intelligently Make Use of Real Data /

Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of...

Full description

Main Authors: Berthold, Michael R. (Author, http://id.loc.gov/vocabulary/relators/aut), Borgelt, Christian. (http://id.loc.gov/vocabulary/relators/aut), Höppner, Frank. (http://id.loc.gov/vocabulary/relators/aut), Klawonn, Frank. (http://id.loc.gov/vocabulary/relators/aut), Silipo, Rosaria. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:2nd ed. 2020.
Series:Texts in Computer Science,
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-45574-3
LEADER 05521nam a22005775i 4500
001 978-3-030-45574-3
003 DE-He213
005 20210621214629.0
007 cr nn 008mamaa
008 200806s2020 gw | s |||| 0|eng d
020 |a 9783030455743  |9 978-3-030-45574-3 
024 7 |a 10.1007/978-3-030-45574-3  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Berthold, Michael R.  |e author.  |0 (orcid)0000-0001-9095-3283  |1 https://orcid.org/0000-0001-9095-3283  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Guide to Intelligent Data Science  |h [electronic resource] :  |b How to Intelligently Make Use of Real Data /  |c by Michael R. Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn, Rosaria Silipo. 
250 |a 2nd ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XIII, 420 p. 179 illus., 122 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Computer Science,  |x 1868-0941 
505 0 |a Introduction -- Practical Data Analysis: An Example -- Project Understanding -- Data Understanding -- Principles of Modeling -- Data Preparation -- Finding Patterns -- Finding Explanations -- Finding Predictors -- Evaluation and Deployment -- The Labelling Problem -- Appendix A: Statistics -- Appendix B: KNIME. 
520 |a Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: Guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring Includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix Provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms Integrates illustrations and case-study-style examples to support pedagogical exposition Supplies further tools and information at an associated website This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject. Prof. Dr. Michael R. Berthold is Professor for Bioinformatics and Information Mining at the University of Konstanz. Prof. Dr. Christian Borgelt is Professor for Data Science at the Paris Lodron University of Salzburg. Prof. Dr. Frank Höppner is Professor of Information Engineering at Ostfalia University of Applied Sciences. Prof. Dr. Frank Klawonn is Professor for Data Analysis and Pattern Recognition at the same institution and head of the Biostatistics Group at the Helmholtz Centre for Infection Research. Dr. Rosaria Silipo is a Principal Data Scientist and Head of Evangelism at KNIME AG. 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 0 |a Big data. 
650 1 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Machine Learning.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21010 
650 2 4 |a Big Data/Analytics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/522070 
700 1 |a Borgelt, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Höppner, Frank.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Klawonn, Frank.  |e author.  |0 (orcid)0000-0001-9613-182X  |1 https://orcid.org/0000-0001-9613-182X  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Silipo, Rosaria.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030455736 
776 0 8 |i Printed edition:  |z 9783030455750 
776 0 8 |i Printed edition:  |z 9783030455767 
830 0 |a Texts in Computer Science,  |x 1868-0941 
856 4 0 |u https://doi.org/10.1007/978-3-030-45574-3 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)