Inpainting and Denoising Challenges

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/v...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Escalera, Sergio. (Editor, http://id.loc.gov/vocabulary/relators/edt), Ayache, Stephane. (Editor, http://id.loc.gov/vocabulary/relators/edt), Wan, Jun. (Editor, http://id.loc.gov/vocabulary/relators/edt), Madadi, Meysam. (Editor, http://id.loc.gov/vocabulary/relators/edt), Güçlü, Umut. (Editor, http://id.loc.gov/vocabulary/relators/edt), Baró, Xavier. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:The Springer Series on Challenges in Machine Learning,
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-25614-2
LEADER 04770nam a22005775i 4500
001 978-3-030-25614-2
003 DE-He213
005 20210618202237.0
007 cr nn 008mamaa
008 191016s2019 gw | s |||| 0|eng d
020 |a 9783030256142  |9 978-3-030-25614-2 
024 7 |a 10.1007/978-3-030-25614-2  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Inpainting and Denoising Challenges  |h [electronic resource] /  |c edited by Sergio Escalera, Stephane Ayache, Jun Wan, Meysam Madadi, Umut Güçlü, Xavier Baró. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 144 p. 65 illus., 56 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
505 0 |a 1. A Brief Review of Image Denoising Algorithms and Beyond -- 2. ChaLearn Looking at People: Inpainting and Denoising Challenges -- 3. U-Finger: Multi-Scale Dilated Convolutional Network for Fingerprint Image Denoising and Inpainting -- 4. FPD-M-net: Fingerprint Image Denoising and Inpainting Using M-Net Based Convolutional Neural Networks -- 5. Iterative Application of Autoencoders for Video Inpainting and Fingerprint Denoising -- 6. Video DeCaptioning using U-Net with Stacked Dilated Convolutional Layers -- 7. Joint Caption Detection and Inpainting using Generative Network -- 8. Generative Image Inpainting for Person Pose Generation -- 9. Person Inpainting with Generative Adversarial Networks -- 10. Road Layout Understanding by Generative Adversarial Inpainting -- 11. Photo-realistic and Robust Inpainting of Faces using Refinement GANs. 
520 |a The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting. . 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
700 1 |a Escalera, Sergio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ayache, Stephane.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wan, Jun.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Madadi, Meysam.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Güçlü, Umut.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Baró, Xavier.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030256135 
776 0 8 |i Printed edition:  |z 9783030256159 
776 0 8 |i Printed edition:  |z 9783030256166 
830 0 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
856 4 0 |u https://doi.org/10.1007/978-3-030-25614-2 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)