Automated Machine Learning Methods, Systems, Challenges /

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Hutter, Frank. (Editor, http://id.loc.gov/vocabulary/relators/edt), Kotthoff, Lars. (Editor, http://id.loc.gov/vocabulary/relators/edt), Vanschoren, Joaquin. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:The Springer Series on Challenges in Machine Learning,
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-05318-5
LEADER 03726nam a22005535i 4500
001 978-3-030-05318-5
003 DE-He213
005 20210619014437.0
007 cr nn 008mamaa
008 190517s2019 gw | s |||| 0|eng d
020 |a 9783030053185  |9 978-3-030-05318-5 
024 7 |a 10.1007/978-3-030-05318-5  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Automated Machine Learning  |h [electronic resource] :  |b Methods, Systems, Challenges /  |c edited by Frank Hutter, Lars Kotthoff, Joaquin Vanschoren. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XIV, 219 p. 54 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
505 0 |a 1 Hyperparameter Optimization -- 2 Meta-Learning -- 3 Neural Architecture Search -- 4 Auto-WEKA -- 5 Hyperopt-Sklearn -- 6 Auto-sklearn -- 7 Towards Automatically-Tuned Deep Neural Networks -- 8 TPOT -- 9 The Automatic Statistician -- 10 AutoML Challenges. 
506 0 |a Open Access 
520 |a This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. 
650 0 |a Artificial intelligence. 
650 0 |a Optical data processing. 
650 0 |a Pattern recognition. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
700 1 |a Hutter, Frank.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kotthoff, Lars.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Vanschoren, Joaquin.  |e editor.  |0 (orcid)0000-0001-7044-9805  |1 https://orcid.org/0000-0001-7044-9805  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030053178 
776 0 8 |i Printed edition:  |z 9783030053192 
830 0 |a The Springer Series on Challenges in Machine Learning,  |x 2520-131X 
856 4 0 |u https://doi.org/10.1007/978-3-030-05318-5 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)