Catalan's Conjecture

Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents thi...

Full description

Main Author: Schoof, René. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Universitext,
Subjects:
Online Access:https://doi.org/10.1007/978-1-84800-185-5
LEADER 03590nam a22005055i 4500
001 978-1-84800-185-5
003 DE-He213
005 20210615195319.0
007 cr nn 008mamaa
008 100707s2008 xxk| s |||| 0|eng d
020 |a 9781848001855  |9 978-1-84800-185-5 
024 7 |a 10.1007/978-1-84800-185-5  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Schoof, René.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Catalan's Conjecture  |h [electronic resource] /  |c by René Schoof. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a IX, 124 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a The Case “q = 2” -- The Case “p = 2” -- The Nontrivial Solution -- Runge’s Method -- Cassels’ theorem -- An Obstruction Group -- Small p or q -- The Stickelberger Ideal -- The Double Wieferich Criterion -- The Minus Argument -- The Plus Argument I -- Semisimple Group Rings -- The Plus Argument II -- The Density Theorem -- Thaine’s Theorem. 
520 |a Eugène Charles Catalan made his famous conjecture – that 8 and 9 are the only two consecutive perfect powers of natural numbers – in 1844 in a letter to the editor of Crelle’s mathematical journal. One hundred and fifty-eight years later, Preda Mihailescu proved it. Catalan’s Conjecture presents this spectacular result in a way that is accessible to the advanced undergraduate. The first few sections of the book require little more than a basic mathematical background and some knowledge of elementary number theory, while later sections involve Galois theory, algebraic number theory and a small amount of commutative algebra. The prerequisites, such as the basic facts from the arithmetic of cyclotomic fields, are all discussed within the text. The author dissects both Mihailescu’s proof and the earlier work it made use of, taking great care to select streamlined and transparent versions of the arguments and to keep the text self-contained. Only in the proof of Thaine’s theorem is a little class field theory used; it is hoped that this application will motivate the interested reader to study the theory further. Beautifully clear and concise, this book will appeal not only to specialists in number theory but to anyone interested in seeing the application of the ideas of algebraic number theory to a famous mathematical problem. 
650 0 |a Number theory. 
650 0 |a Algebra. 
650 0 |a Mathematics. 
650 1 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
650 2 4 |a General Algebraic Systems.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1106X 
650 2 4 |a Mathematics, general.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M00009 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848824157 
776 0 8 |i Printed edition:  |z 9781848001848 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://doi.org/10.1007/978-1-84800-185-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)