Introduction to Geometric Computing

The geometric ideas in computer science, mathematics, engineering, and physics have considerable overlap and students in each of these disciplines will eventually encounter geometric computing problems. The topic is traditionally taught in mathematics departments via geometry courses, and in compute...

Full description

Main Author: Ghali, Sherif. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Subjects:
Online Access:https://doi.org/10.1007/978-1-84800-115-2
LEADER 04850nam a22005655i 4500
001 978-1-84800-115-2
003 DE-He213
005 20210615202740.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848001152  |9 978-1-84800-115-2 
024 7 |a 10.1007/978-1-84800-115-2  |2 doi 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
072 7 |a UMZ  |2 thema 
072 7 |a UL  |2 thema 
082 0 4 |a 005.1  |2 23 
100 1 |a Ghali, Sherif.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Geometric Computing  |h [electronic resource] /  |c by Sherif Ghali. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XVII, 340 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Euclidean Geometry -- 2D Computational Euclidean Geometry -- Geometric Predicates -- 3D Computational Euclidean Geometry -- Affine Transformations -- Affine Intersections -- Genericity in Geometric Computing -- Numerical Precision -- Non-Euclidean Geometries -- 1D Computational Spherical Geometry -- 2D Computational Spherical Geometry -- Rotations and Quaternions -- Projective Geometry -- Homogeneous Coordinates for Projective Geometry -- Barycentric Coordinates -- Oriented Projective Geometry -- Oriented Projective Intersections -- Coordinate-Free Geometry -- Homogeneous Coordinates for Euclidean Geometry -- Coordinate-Free Geometric Computing -- to CGAL -- Raster Graphics -- Segment Scan Conversion -- Polygon-Point Containment -- Illumination and Shading -- Raster-Based Visibility -- Ray Tracing -- Tree and Graph Drawing -- Tree Drawing -- Graph Drawing -- Geometric and Solid Modeling -- Boundary Representations -- The Halfedge Data Structure and Euler Operators -- BSP Trees in Euclidean and Spherical Geometries -- Geometry-Free Geometric Computing -- Constructive Solid Geometry -- Vector Visibility -- Visibility from Euclidean to Spherical Spaces -- Visibility in Space. 
520 |a The geometric ideas in computer science, mathematics, engineering, and physics have considerable overlap and students in each of these disciplines will eventually encounter geometric computing problems. The topic is traditionally taught in mathematics departments via geometry courses, and in computer science through computer graphics modules. This text isolates the fundamental topics affecting these disciplines and lies at the intersection of classical geometry and modern computing. The main theme of the book is the definition of coordinate-free geometric software layers for Euclidean, spherical, projective, and oriented-projective geometries. Results are derived from elementary linear algebra and many classical computer graphics problems (including the graphics pipeline) are recast in this new language. Also included is a novel treatment of classical geometric and solid modeling problems. The definition of geometric software layers promotes reuse, speeds up debugging, and prepares the ground for a thorough discussion of advanced topics. Start-up programs are provided for many programming exercises making this an invaluable book for computer science lecturers as well as software developers and researchers in the computer graphics industry. 
650 0 |a Software engineering. 
650 0 |a Geometry. 
650 0 |a Computer science—Mathematics. 
650 0 |a Computer graphics. 
650 0 |a Computer-aided engineering. 
650 0 |a Optical data processing. 
650 1 4 |a Software Engineering/Programming and Operating Systems.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14002 
650 2 4 |a Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21006 
650 2 4 |a Math Applications in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17044 
650 2 4 |a Computer Graphics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22013 
650 2 4 |a Computer-Aided Engineering (CAD, CAE) and Design.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23044 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22005 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848820388 
776 0 8 |i Printed edition:  |z 9781848001145 
856 4 0 |u https://doi.org/10.1007/978-1-84800-115-2 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)