Data Science Using Oracle Data Miner and Oracle R Enterprise Transform Your Business Systems into an Analytical Powerhouse /

Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps...

Full description

Main Author: Das, Sibanjan. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-1-4842-2614-8
LEADER 03122nam a22004815i 4500
001 978-1-4842-2614-8
003 DE-He213
005 20210619101111.0
007 cr nn 008mamaa
008 161222s2016 xxu| s |||| 0|eng d
020 |a 9781484226148  |9 978-1-4842-2614-8 
024 7 |a 10.1007/978-1-4842-2614-8  |2 doi 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Das, Sibanjan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Science Using Oracle Data Miner and Oracle R Enterprise  |h [electronic resource] :  |b Transform Your Business Systems into an Analytical Powerhouse /  |c by Sibanjan Das. 
250 |a 1st ed. 2016. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2016. 
300 |a XXII, 289 p. 318 illus., 289 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction Chapter 1 : Getting Started with Oracle Advanced Analytics -- Chapter 2 : Installation and Hello World -- Chapter 3: Clustering Methods -- Chapter 4: Association Rules -- Chapter 5: Regression Analysis -- Chapter 6: Classification Techniques -- Chapter 7: Advanced Topics -- Chapter 8: Solution Deployment. 
520 |a Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes. 
650 0 |a Big data. 
650 0 |a Database management. 
650 0 |a Programming languages (Electronic computers). 
650 1 4 |a Big Data.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I29120 
650 2 4 |a Database Management.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18024 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14037 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484226131 
776 0 8 |i Printed edition:  |z 9781484226155 
856 4 0 |u https://doi.org/10.1007/978-1-4842-2614-8 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)