Business Analytics Using R - A Practical Approach

Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and...

Full description

Main Authors: Hodeghatta, Umesh R. (Author, http://id.loc.gov/vocabulary/relators/aut), Nayak, Umesha. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berkeley, CA : Apress : Imprint: Apress, 2017.
Edition:1st ed. 2017.
Subjects:
Online Access:https://doi.org/10.1007/978-1-4842-2514-1
LEADER 04054nam a22005655i 4500
001 978-1-4842-2514-1
003 DE-He213
005 20210617021011.0
007 cr nn 008mamaa
008 161227s2017 xxu| s |||| 0|eng d
020 |a 9781484225141  |9 978-1-4842-2514-1 
024 7 |a 10.1007/978-1-4842-2514-1  |2 doi 
050 4 |a QA76.9.B45 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
100 1 |a Hodeghatta, Umesh R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Business Analytics Using R - A Practical Approach  |h [electronic resource] /  |c by Umesh R Hodeghatta, Umesha Nayak. 
250 |a 1st ed. 2017. 
264 1 |a Berkeley, CA :  |b Apress :  |b Imprint: Apress,  |c 2017. 
300 |a XVII, 280 p. 278 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. You will: • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem. 
650 0 |a Big data. 
650 0 |a Computer programming. 
650 0 |a Programming languages (Electronic computers). 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Mathematical statistics. 
650 1 4 |a Big Data.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I29120 
650 2 4 |a Programming Techniques.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14010 
650 2 4 |a Programming Languages, Compilers, Interpreters.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14037 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Information Storage and Retrieval.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18032 
650 2 4 |a Probability and Statistics in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17036 
700 1 |a Nayak, Umesha.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781484225134 
776 0 8 |i Printed edition:  |z 9781484225158 
776 0 8 |i Printed edition:  |z 9781484256770 
856 4 0 |u https://doi.org/10.1007/978-1-4842-2514-1 
912 |a ZDB-2-CWD 
912 |a ZDB-2-SXPC 
950 |a Professional and Applied Computing (SpringerNature-12059) 
950 |a Professional and Applied Computing (R0) (SpringerNature-43716)