An Introduction to Statistical Learning with Applications in R /

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. Thi...

Full description

Main Authors: James, Gareth. (Author, http://id.loc.gov/vocabulary/relators/aut), Witten, Daniela. (http://id.loc.gov/vocabulary/relators/aut), Hastie, Trevor. (http://id.loc.gov/vocabulary/relators/aut), Tibshirani, Robert. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Springer Texts in Statistics, 103
Subjects:
Online Access:https://doi.org/10.1007/978-1-4614-7138-7
LEADER 04270nam a22005535i 4500
001 978-1-4614-7138-7
003 DE-He213
005 20210619001413.0
007 cr nn 008mamaa
008 130625s2013 xxu| s |||| 0|eng d
020 |a 9781461471387  |9 978-1-4614-7138-7 
024 7 |a 10.1007/978-1-4614-7138-7  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a James, Gareth.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Statistical Learning  |h [electronic resource] :  |b with Applications in R /  |c by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 426 p. 556 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 103 
505 0 |a Introduction -- Statistical Learning -- Linear Regression -- Classification -- Resampling Methods -- Linear Model Selection and Regularization -- Moving Beyond Linearity -- Tree-Based Methods -- Support Vector Machines -- Unsupervised Learning -- Index. 
520 |a An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. 
650 0 |a Statistics . 
650 0 |a Artificial intelligence. 
650 1 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Statistics, general.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S0000X 
700 1 |a Witten, Daniela.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hastie, Trevor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tibshirani, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781461471370 
776 0 8 |i Printed edition:  |z 9781461471394 
776 0 8 |i Printed edition:  |z 9781071613054 
830 0 |a Springer Texts in Statistics,  |x 1431-875X ;  |v 103 
856 4 0 |u https://doi.org/10.1007/978-1-4614-7138-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)