Malliavin Calculus and Stochastic Analysis A Festschrift in Honor of David Nualart /

The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David N...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Viens, Frederi. (Editor, http://id.loc.gov/vocabulary/relators/edt), Feng, Jin. (Editor, http://id.loc.gov/vocabulary/relators/edt), Hu, Yaozhong. (Editor, http://id.loc.gov/vocabulary/relators/edt), Nualart , Eulalia. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Springer Proceedings in Mathematics & Statistics, 34
Subjects:
Online Access:https://doi.org/10.1007/978-1-4614-5906-4
LEADER 05208nam a22005895i 4500
001 978-1-4614-5906-4
003 DE-He213
005 20210615173434.0
007 cr nn 008mamaa
008 130217s2013 xxu| s |||| 0|eng d
020 |a 9781461459064  |9 978-1-4614-5906-4 
024 7 |a 10.1007/978-1-4614-5906-4  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Malliavin Calculus and Stochastic Analysis  |h [electronic resource] :  |b A Festschrift in Honor of David Nualart /  |c edited by Frederi Viens, Jin Feng, Yaozhong Hu, Eulalia Nualart . 
250 |a 1st ed. 2013. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2013. 
300 |a XI, 583 p. 13 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 34 
505 0 |a An Application of Gaussian Measures to Functional Analysis -- Stochastic Taylor Formulas and Riemannian Geometry -- Local invertibility of adapted shifts on Wiener Space and related topics -- Dilation vector field on Wiener space -- The calculus of differentials for the weak Stratonovich integral -- Large deviations for Hilbert space valued Wiener processes: a sequence space approach -- Stationary distributions for jump processes with inert drift -- An Ornstein-Uhlenbeck type process which satisfies sufficient conditions for a simulation based filtering procedure -- Escape probability for stochastic dynamical systems with jumps -- On Stochastic Navier-Stokes Equation Driven by Stationary White Noise -- Intermittency and chaos for a non-linear stochastic wave equation in dimension 1 -- Generalized stochastic heat equations -- Gaussian Upper Density estimates for spatially homogeneous Stochastic PDEs -- Stationarity of the solution for the semilinear stochastic integral equation on the whole real line -- A strong approximation of sub-fractional Brownian motion by means of transport processes -- Malliavin calculus for fractional heat equation -- Parameter estimation for alpha-fractional bridges -- Gradient bounds for solutions of stochastic differential equations driven by fractional Brownian motion -- Parameter estimation for fractional Ornstein-Uhlenbeck processes with discrete observations -- The effect of competition on the height and length of the forest of genealogical trees of a large population -- Linking progressive and initial filtration expansions -- A Malliavin calculus approach to general stochastic differential games with partial information -- Asymptotics for the Length of Longest Increasing Subsequences of Binary Markovian Words -- A short rate model using ambit processes -- Parametric regularity of the conditional expectations via the Malliavin calculus and applications. 
520 |a The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume. 
650 0 |a Probabilities. 
650 0 |a Economics, Mathematical . 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Quantitative Finance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13062 
650 2 4 |a Applications of Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13003 
700 1 |a Viens, Frederi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Feng, Jin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hu, Yaozhong.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Nualart , Eulalia.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781489996572 
776 0 8 |i Printed edition:  |z 9781461459057 
776 0 8 |i Printed edition:  |z 9781461459071 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 34 
856 4 0 |u https://doi.org/10.1007/978-1-4614-5906-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)