Asymptotic Chaos Expansions in Finance Theory and Practice /

Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for...

Full description

Main Author: Nicolay, David. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Springer Finance Lecture Notes,
Subjects:
Online Access:https://doi.org/10.1007/978-1-4471-6506-4
LEADER 04334nam a22005535i 4500
001 978-1-4471-6506-4
003 DE-He213
005 20210617133106.0
007 cr nn 008mamaa
008 141125s2014 xxk| s |||| 0|eng d
020 |a 9781447165064  |9 978-1-4471-6506-4 
024 7 |a 10.1007/978-1-4471-6506-4  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Nicolay, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Asymptotic Chaos Expansions in Finance  |h [electronic resource] :  |b Theory and Practice /  |c by David Nicolay. 
250 |a 1st ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XXII, 491 p. 34 illus., 26 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Finance Lecture Notes,  |x 2524-681X 
505 0 |a Introduction -- Volatility dynamics for a single underlying: foundations -- Volatility dynamics for a single underlying: advanced methods -- Practical applications and testing -- Volatility dynamics in a term structure -- Implied Dynamics in the SV-HJM framework -- Implied Dynamics in the SV-LMM framework -- Conclusion. 
520 |a Stochastic instantaneous volatility models such as Heston, SABR or SV-LMM have mostly been developed to control the shape and joint dynamics of the implied volatility surface. In principle, they are well suited for pricing and hedging vanilla and exotic options, for relative value strategies or for risk management. In practice however, most SV models lack a closed form valuation for European options. This book presents the recently developed Asymptotic Chaos Expansions methodology (ACE) which addresses that issue. Indeed its generic algorithm provides, for any regular SV model, the pure asymptotes at any order for both the static and dynamic maps of the implied volatility surface. Furthermore, ACE is programmable and can complement other approximation methods. Hence it allows a systematic approach to designing, parameterising, calibrating and exploiting SV models, typically for Vega hedging or American Monte-Carlo. Asymptotic Chaos Expansions in Finance illustrates the ACE approach for single underlyings (such as a stock price or FX rate), baskets (indexes, spreads) and term structure models (especially SV-HJM and SV-LMM). It also establishes fundamental links between the Wiener chaos of the instantaneous volatility and the small-time asymptotic structure of the stochastic implied volatility framework. It is addressed primarily to financial mathematics researchers and graduate students, interested in stochastic volatility, asymptotics or market models. Moreover, as it contains many self-contained approximation results, it will be useful to practitioners modelling the shape of the smile and its evolution. 
650 0 |a Partial differential equations. 
650 0 |a Economics, Mathematical . 
650 0 |a Numerical analysis. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Quantitative Finance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13062 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14068 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447165071 
776 0 8 |i Printed edition:  |z 9781447165057 
830 0 |a Springer Finance Lecture Notes,  |x 2524-681X 
856 4 0 |u https://doi.org/10.1007/978-1-4471-6506-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)