BioH2 & BioCH4 Through Anaerobic Digestion From Research to Full-scale Applications /

This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obta...

Full description

Main Authors: Ruggeri, Bernardo. (Author, http://id.loc.gov/vocabulary/relators/aut), Tommasi, Tonia. (http://id.loc.gov/vocabulary/relators/aut), Sanfilippo, Sara. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Green Energy and Technology,
Subjects:
Online Access:https://doi.org/10.1007/978-1-4471-6431-9
LEADER 05388nam a22006255i 4500
001 978-1-4471-6431-9
003 DE-He213
005 20210617170915.0
007 cr nn 008mamaa
008 150202s2015 xxk| s |||| 0|eng d
020 |a 9781447164319  |9 978-1-4471-6431-9 
024 7 |a 10.1007/978-1-4471-6431-9  |2 doi 
050 4 |a TJ807-830 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a TEC031010  |2 bisacsh 
072 7 |a THV  |2 thema 
072 7 |a THV  |2 thema 
082 0 4 |a 621.042  |2 23 
082 0 4 |a 621.042  |2 23 
100 1 |a Ruggeri, Bernardo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a BioH2 & BioCH4 Through Anaerobic Digestion  |h [electronic resource] :  |b From Research to Full-scale Applications /  |c by Bernardo Ruggeri, Tonia Tommasi, Sara Sanfilippo. 
250 |a 1st ed. 2015. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 218 p. 74 illus., 70 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Green Energy and Technology,  |x 1865-3529 
505 0 |a Dark-h2 production ecological mechanisms by the mixed microbial community -- Pretreatment to increase hydrogen forming bacteria (hfb) physiological differences between h2-producing bacteria and h2-uptaking bacteria -- Kinetics and dynamics of h2 production -- Effect of temperature on fermentative h2 production -- Energy production of h2 in dark anaerobic fermentation -- Hydrogen production from bio-waste biomass as food for microorganisms -- Design criteria and scale-up procedure for h2 production -- Valorization of end-liquid products of h2 fermentation -- The technology of bioh2 plus bioch4 -- Sustainability of the bioh2 plus bioch4 process.                                                                                                                                    . 
520 |a This book presents a Two-Stage Anaerobic Digestion (TSAD) technique for producing hydrogen and methane, following a step-by-step approach in order to guide readers through the experimental verification of the related hypothesis. In the first stage of AD, the reaction conditions are optimized to obtain the maximum amount of hydrogen, while in the second the liquid residue from the first phase is used as a substrate to produce fuel-methane. AD has traditionally been used to reduce the organic content of waste; this results in a biogas that is primarily constituted of CH4 and CO2. Over the last few decades, the conversion of organic matter into hydrogen by means of AD and selecting Hydrogen Producing Bacteria (HPB) has matured into a viable and sustainable technology among the pallet of H2 generation technologies. The combined bio-production of hydrogen and methane from Organic Waste Materials (OWM) is considered to be an ideal way of utilizing waste, and can increase energy efficiency (the substrate Heat Value converted into H2 and CH4 fuel) to roughly 80%, since the energy efficiency of H2-production alone (15%) is not energetically competitive. The two gas streams can be used either separately or in combination (Hytane®), be supplied as civilian gas or used for transportation purposes. All the aspects of this sustainable technology are taken into account, from the basic biochemical implications to engineering aspects, establishing the design criteria and the scale-up procedures for full-scale application. The sustainability of the TSAD method is assessed by applying EROI (Energy Return On Investment) and EPT (Energy Payback Time) criteria, and both the general approach and application to the field of Anaerobic Digestion are illustrated.  . 
650 0 |a Renewable energy resources. 
650 0 |a Biochemical engineering. 
650 0 |a Environmental sciences. 
650 0 |a Environmental engineering. 
650 0 |a Biotechnology. 
650 1 4 |a Renewable and Green Energy.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/111000 
650 2 4 |a Renewable and Green Energy.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/111000 
650 2 4 |a Biochemical Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/C12029 
650 2 4 |a Environmental Science and Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/G37000 
650 2 4 |a Environmental Engineering/Biotechnology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/U33000 
700 1 |a Tommasi, Tonia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sanfilippo, Sara.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447164326 
776 0 8 |i Printed edition:  |z 9781447164302 
776 0 8 |i Printed edition:  |z 9781447169833 
830 0 |a Green Energy and Technology,  |x 1865-3529 
856 4 0 |u https://doi.org/10.1007/978-1-4471-6431-9 
912 |a ZDB-2-ENE 
912 |a ZDB-2-SXEN 
950 |a Energy (SpringerNature-40367) 
950 |a Energy (R0) (SpringerNature-43717)