Advanced Topics in Computer Vision

Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout.  This unique text/reference presents...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Farinella, Giovanni Maria. (Editor, http://id.loc.gov/vocabulary/relators/edt), Battiato, Sebastiano. (Editor, http://id.loc.gov/vocabulary/relators/edt), Cipolla, Roberto. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Advances in Computer Vision and Pattern Recognition,
Subjects:
Online Access:https://doi.org/10.1007/978-1-4471-5520-1
LEADER 05036nam a22004935i 4500
001 978-1-4471-5520-1
003 DE-He213
005 20210617062751.0
007 cr nn 008mamaa
008 130923s2013 xxk| s |||| 0|eng d
020 |a 9781447155201  |9 978-1-4471-5520-1 
024 7 |a 10.1007/978-1-4471-5520-1  |2 doi 
050 4 |a TA1630-1650 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
245 1 0 |a Advanced Topics in Computer Vision  |h [electronic resource] /  |c edited by Giovanni Maria Farinella, Sebastiano Battiato, Roberto Cipolla. 
250 |a 1st ed. 2013. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 433 p. 218 illus., 180 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a Visual Features: From Early Concepts to Modern Computer Vision -- Where Next in Object Recognition and How Much Supervision Do We Need? -- Recognizing Human Actions by Using Effective Codebooks and Tracking -- Evaluating and Extending Trajectory Features for Activity Recognition -- Co-Recognition of Images and Videos: Unsupervised Matching of Identical Object Patterns and its Applications -- Stereo Matching: State-of-the-Art and Research Challenges -- Visual Localization for Micro Aerial Vehicles in Urban Outdoor Environments -- Moment Constraints in Convex Optimization for Segmentation and Tracking -- Large Scale Metric Learning for Distance-Based Image Classification on Open Ended Data Sets -- Top-Down Bayesian Inference of Indoor Scenes -- Efficient Loopy Belief Propagation Using the Four Color Theorem -- Boosting k-Nearest Neighbors Classification -- Learning Object Detectors in Stationary Environments -- Video Temporal Super-Resolution Based on Self-Similarity. 
520 |a Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout.  This unique text/reference presents a broad selection of cutting-edge research, covering both theoretical and practical aspects of the three main areas in computer vision: reconstruction, registration, and recognition. The book provides an in-depth overview of challenging areas, in addition to descriptions of novel algorithms that exploit machine learning and pattern recognition techniques to infer the semantic content of images and videos.  Topics and features: Investigates visual features, trajectory features, and stereo matching Reviews the main challenges of semi-supervised object recognition, and a novel method for human action categorization Presents a framework for the visual localization of MAVs, and for the use of moment constraints in convex shape optimization Examines solutions to the co-recognition problem, and distance-based classifiers for large-scale image classification Describes how the four-color theorem can be used in early computer vision for solving MRF problems where an energy is to be minimized Introduces a Bayesian generative model for understanding indoor environments, and a boosting approach for generalizing the k-NN rule Discusses the issue of scene-specific object detection, and an approach for making temporal super resolution video from a single input image sequence  This must-read collection will be of great value to advanced undergraduate and graduate students of computer vision, pattern recognition and machine learning. Researchers and practitioners will also find the book useful for understanding and reviewing current approaches in computer vision. 
650 0 |a Optical data processing. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22005 
700 1 |a Farinella, Giovanni Maria.  |e editor.  |0 (orcid)0000-0002-6034-0432  |1 https://orcid.org/0000-0002-6034-0432  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Battiato, Sebastiano.  |e editor.  |0 (orcid)0000-0001-6127-2470  |1 https://orcid.org/0000-0001-6127-2470  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cipolla, Roberto.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447155218 
776 0 8 |i Printed edition:  |z 9781447155195 
776 0 8 |i Printed edition:  |z 9781447170259 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u https://doi.org/10.1007/978-1-4471-5520-1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)