Analysis of Finite Difference Schemes For Linear Partial Differential Equations with Generalized Solutions /

This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partia...

Full description

Main Authors: Jovanović, Boško S. (Author, http://id.loc.gov/vocabulary/relators/aut), Süli, Endre. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Springer Series in Computational Mathematics, 46
Subjects:
Online Access:https://doi.org/10.1007/978-1-4471-5460-0
LEADER 03709nam a22005055i 4500
001 978-1-4471-5460-0
003 DE-He213
005 20210618022703.0
007 cr nn 008mamaa
008 131021s2014 xxk| s |||| 0|eng d
020 |a 9781447154600  |9 978-1-4471-5460-0 
024 7 |a 10.1007/978-1-4471-5460-0  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Jovanović, Boško S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis of Finite Difference Schemes  |h [electronic resource] :  |b For Linear Partial Differential Equations with Generalized Solutions /  |c by Boško S. Jovanović, Endre Süli. 
250 |a 1st ed. 2014. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 408 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 46 
505 0 |a Distributions and function spaces -- Elliptic boundary-value problems -- Finite difference approximation of parabolic problems -- Finite difference approximation of hyperbolic problems. 
520 |a This book develops a systematic and rigorous mathematical theory of finite difference methods for linear elliptic, parabolic and hyperbolic partial differential equations with nonsmooth solutions. Finite difference methods are a classical class of techniques for the numerical approximation of partial differential equations. Traditionally, their convergence analysis presupposes the smoothness of the coefficients, source terms, initial and boundary data, and of the associated solution to the differential equation. This then enables the application of elementary analytical tools to explore their stability and accuracy. The assumptions on the smoothness of the data and of the associated analytical solution are however frequently unrealistic. There is a wealth of boundary – and initial – value problems, arising from various applications in physics and engineering, where the data and the corresponding solution exhibit lack of regularity. In such instances classical techniques for the error analysis of finite difference schemes break down. The objective of this book is to develop the mathematical theory of finite difference schemes for linear partial differential equations with nonsmooth solutions. Analysis of Finite Difference Schemes is aimed at researchers and graduate students interested in the mathematical theory of numerical methods for the approximate solution of partial differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Partial differential equations. 
650 1 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
700 1 |a Süli, Endre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447154617 
776 0 8 |i Printed edition:  |z 9781447154594 
776 0 8 |i Printed edition:  |z 9781447172598 
830 0 |a Springer Series in Computational Mathematics,  |x 0179-3632 ;  |v 46 
856 4 0 |u https://doi.org/10.1007/978-1-4471-5460-0 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)