Cellular Genetic Algorithms

CELLULAR GENETIC ALGORITHMS defines a new class of optimization algorithms based on the concepts of structured populations and Genetic Algorithms (GAs). The authors explain and demonstrate the validity of these cellular genetic algorithms throughout the book. This class of genetic algorithms is show...

Full description

Main Authors: Alba, Enrique. (Author, http://id.loc.gov/vocabulary/relators/aut), Dorronsoro, Bernabe. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Operations Research/Computer Science Interfaces Series, 42
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-77610-1
LEADER 05036nam a22006135i 4500
001 978-0-387-77610-1
003 DE-He213
005 20210619180556.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387776101  |9 978-0-387-77610-1 
024 7 |a 10.1007/978-0-387-77610-1  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Alba, Enrique.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cellular Genetic Algorithms  |h [electronic resource] /  |c by Enrique Alba, Bernabe Dorronsoro. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 248 p. 72 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 42 
505 0 |a I Introduction -- to Cellular Genetic Algorithms -- The State of the Art in Cellular Evolutionary Algorithms -- II Characterizing Cellular Genetic Algorithms -- On the Effects of Structuring the Population -- Some Theory: A Selection Pressure Study on cGAs -- III Algorithmic Models and Extensions -- Algorithmic and Experimental Design -- Design of Self-adaptive cGAs -- Design of Cellular Memetic Algorithms -- Design of Parallel Cellular Genetic Algorithms -- Designing Cellular Genetic Algorithms for Multi-objective Optimization -- Other Cellular Models -- Software for cGAs: The JCell Framework -- IV Applications of cGAs -- Continuous Optimization -- Logistics: The Vehicle Routing Problem -- Telecommunications: Optimization of the Broadcasting Process in MANETs -- Bioinformatics: The DNA Fragment Assembly Problem. 
520 |a CELLULAR GENETIC ALGORITHMS defines a new class of optimization algorithms based on the concepts of structured populations and Genetic Algorithms (GAs). The authors explain and demonstrate the validity of these cellular genetic algorithms throughout the book. This class of genetic algorithms is shown to produce impressive results on a whole range of domains, including complex problems that are epistatic, multi-modal, deceptive, discrete, continuous, multi-objective, and random in nature. The focus of this book is twofold. On the one hand, the authors present new algorithmic models and extensions to the basic class of Cellular GAs in order to tackle complex problems more efficiently. On the other hand, practical real world tasks are successfully faced by applying Cellular GA methodologies to produce workable solutions of real-world applications. These methods can include local search (memetic algorithms), cooperation, parallelism, multi-objective, estimations of distributions, and self-adaptive ideas to extend their applicability. The methods are benchmarked against well-known metaheutistics like Genetic Algorithms, Tabu Search, heterogeneous GAs, Estimation of Distribution Algorithms, etc. Also, a publicly available software tool is offered to reduce the learning curve in applying these techniques. The three final chapters will use the classic problem of "vehicle routing" and the hot topics of "ad-hoc mobile networks" and "DNA genome sequencing" to clearly illustrate and demonstrate the power and utility of these algorithms. 
650 0 |a Numerical analysis. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Biomathematics. 
650 0 |a Algorithms. 
650 0 |a Production management. 
650 0 |a Mathematical optimization. 
650 1 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Operations Research/Decision Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/521000 
650 2 4 |a Genetics and Population Dynamics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31010 
650 2 4 |a Algorithms.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14018 
650 2 4 |a Operations Management.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/519000 
650 2 4 |a Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008 
700 1 |a Dorronsoro, Bernabe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387569178 
776 0 8 |i Printed edition:  |z 9781441945945 
776 0 8 |i Printed edition:  |z 9780387776095 
830 0 |a Operations Research/Computer Science Interfaces Series,  |x 1387-666X ;  |v 42 
856 4 0 |u https://doi.org/10.1007/978-0-387-77610-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)