Introduction to Empirical Processes and Semiparametric Inference

This book provides a self-contained, linear, and unified introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods...

Full description

Main Author: Kosorok, Michael R. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Springer Series in Statistics,
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-74978-5
LEADER 05070nam a22005175i 4500
001 978-0-387-74978-5
003 DE-He213
005 20210616232558.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387749785  |9 978-0-387-74978-5 
024 7 |a 10.1007/978-0-387-74978-5  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Kosorok, Michael R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Empirical Processes and Semiparametric Inference  |h [electronic resource] /  |c by Michael R. Kosorok. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 483 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 0172-7397 
505 0 |a Overview -- An Overview of Empirical Processes -- Overview of Semiparametric Inference -- Case Studies I -- Empirical Processes -- to Empirical Processes -- Preliminaries for Empirical Processes -- Stochastic Convergence -- Empirical Process Methods -- Entropy Calculations -- Bootstrapping Empirical Processes -- Additional Empirical Process Results -- The Functional Delta Method -- Z-Estimators -- M-Estimators -- Case Studies II -- Semiparametric Inference -- to Semiparametric Inference -- Preliminaries for Semiparametric Inference -- Semiparametric Models and Efficiency -- Efficient Inference for Finite-Dimensional Parameters -- Efficient Inference for Infinite-Dimensional Parameters -- Semiparametric M-Estimation -- Case Studies III. 
520 |a This book provides a self-contained, linear, and unified introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. The targeted audience includes statisticians, biostatisticians, and other researchers with a background in mathematical statistics who have an interest in learning about and doing research in empirical processes and semiparametric inference but who would like to have a friendly and gradual introduction to the area. The book can be used either as a research reference or as a textbook. The level of the book is suitable for a second year graduate course in statistics or biostatistics, provided the students have had a year of graduate level mathematical statistics and a semester of probability. The book consists of three parts. The first part is a concise overview of all of the main concepts covered in the book with a minimum of technicalities. The second and third parts cover the two respective main topics of empirical processes and semiparametric inference in depth. The connections between these two topics is also demonstrated and emphasized throughout the text. Each part has a final chapter with several case studies that use concrete examples to illustrate the concepts developed so far. The last two parts also each include a chapter which covers the needed mathematical preliminaries. Each main idea is introduced with a non-technical motivation, and examples are given throughout to illustrate important concepts. Homework problems are also included at the end of each chapter to help the reader gain additional insights. Michael R. Kosorok is Professor and Chair, Department of Biostatistics, and Professor, Department of Statistics and Operations Research, at the University of North Carolina at Chapel Hill. His research has focused on the application of empirical processes and semiparametric inference to statistics and biostatistics. He is a Fellow of both the American Statistical Association and the Institute of Mathematical Statistics. He is an Associate Editor of the Annals of Statistics, Electronic Journal of Statistics, International Journal of Biostatistics, Statistics and Probability Letters, and Statistics Surveys. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387521183 
776 0 8 |i Printed edition:  |z 9781441925787 
776 0 8 |i Printed edition:  |z 9780387749778 
830 0 |a Springer Series in Statistics,  |x 0172-7397 
856 4 0 |u https://doi.org/10.1007/978-0-387-74978-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)