Convergence and Applications of Newton-type Iterations

Recent results in local convergence and semi-local convergence analysis constitute a natural framework for the theoretical study of iterative methods. This monograph provides a comprehensive study of both basic theory and new results in the area. Each chapter contains new theoretical results and imp...

Full description

Main Author: Argyros, Ioannis K. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-72743-1
LEADER 03531nam a22004935i 4500
001 978-0-387-72743-1
003 DE-He213
005 20210616050150.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387727431  |9 978-0-387-72743-1 
024 7 |a 10.1007/978-0-387-72743-1  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Argyros, Ioannis K.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Convergence and Applications of Newton-type Iterations  |h [electronic resource] /  |c by Ioannis K. Argyros. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 56 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Operators and Equations -- The Newton Kantorovich (NK) Method -- Applications of the Weaker Version of the NK Theorem -- Special Methods -- Newton-like Methods -- Analytic Computational Complexity We Are Concerned with the Choice of Initial Approximations -- Variational Inequalities -- Convergence Involving Operators with Outer or Generalized Inverses -- Convergence on Generalized Banach Spaces: Improving Error Bounds and Weakening of Convergence Conditions -- Point to Set Mappings -- The Newton Kantorovich Theorem and Mathematical Programming. 
520 |a Recent results in local convergence and semi-local convergence analysis constitute a natural framework for the theoretical study of iterative methods. This monograph provides a comprehensive study of both basic theory and new results in the area. Each chapter contains new theoretical results and important applications in engineering, modeling dynamic economic systems, input-output systems, optimization problems, and nonlinear and linear differential equations. Several classes of operators are considered, including operators without Lipschitz continuous derivatives, operators with high order derivatives, and analytic operators. Each section is self-contained. Examples are used to illustrate the theory and exercises are included at the end of each chapter. The book assumes a basic background in linear algebra and numerical functional analysis. Graduate students and researchers will find this book useful. It may be used as a self-study reference or as a supplementary text for an advanced course in numerical functional analysis. 
650 0 |a Numerical analysis. 
650 0 |a Computer mathematics. 
650 0 |a Functional analysis. 
650 1 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1400X 
650 2 4 |a Functional Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12066 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387566122 
776 0 8 |i Printed edition:  |z 9781441924926 
776 0 8 |i Printed edition:  |z 9780387727417 
856 4 0 |u https://doi.org/10.1007/978-0-387-72743-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)