Design and Analysis of Simulation Experiments

This is an advanced expository book on statistical methods for the Design and Analysis of Simulation Experiments (DASE). Though the book focuses on DASE for discrete-event simulation (such as queuing and inventory simulations), it also discusses DASE for deterministic simulation (such as engineering...

Full description

Main Author: Kleijnen, Jack P.C. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:International Series in Operations Research & Management Science, 111
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-71813-2
LEADER 05267nam a22006375i 4500
001 978-0-387-71813-2
003 DE-He213
005 20210704073619.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780387718132  |9 978-0-387-71813-2 
024 7 |a 10.1007/978-0-387-71813-2  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Kleijnen, Jack P.C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Design and Analysis of Simulation Experiments  |h [electronic resource] /  |c by Jack P.C. Kleijnen. 
250 |a 1st ed. 2008. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 220 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 111 
505 0 |a Preface -- Introduction -- Black Box Metamodels -- Low-Order Polynomial Regression -- Metamodels and Designs: A Single Factor -- Low-Order Polynomial Models and Designs: Multiple Factors -- Low-Order Polynomial Models and Screening Designs: Hundreds of Factors -- Kriging Metamodels -- Latin Hypercube Sampling (LHS) and other Space-Filling Designs -- Cross-Validation of Metamodels -- Conclusions and Further Research. 
520 |a This is an advanced expository book on statistical methods for the Design and Analysis of Simulation Experiments (DASE). Though the book focuses on DASE for discrete-event simulation (such as queuing and inventory simulations), it also discusses DASE for deterministic simulation (such as engineering and physics simulations). The text presents both classic and modern statistical designs. Classic designs (e.g., fractional factorials) assume only a few factors with a few values per factor. The resulting input/output data of the simulation experiment are analyzed through low-order polynomials, which are linear regression (meta)models. Modern designs allow many more factors, possible with many values per factor. These designs include group screening (e.g., Sequential Bifurcation, SB) and space filling designs (e.g., Latin Hypercube Sampling, LHS). The data resulting from these modern designs may be analyzed through low-order polynomials for group screening and various metamodel types (e.g., Kriging) for LHS. In this way, the book provides relatively simple solutions for the problem of which scenarios to simulate and how to analyze the resulting data. The book also includes methods for computationally expensive simulations. It discusses only those tactical issues that are closely related to strategic issues; i.e., the text briefly discusses run-length and variance reduction techniques. The leading textbooks on discrete-event simulation pay little attention to the strategic issues of simulation. The author has been working on strategic issues for approximately forty years, in various scientific disciples--such as operations research, management science, industrial engineering, mathematical statistics, economics, nuclear engineering, computer science, and information systems. The intended audience is comprised of researchers, graduate students, and mature practitioners in the simulation area. They are assumed to have a basic knowledge of simulation and mathematical statistics; nevertheless, the book summarizes these basics, for the readers' convenience. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Mathematical models. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Engineering design. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14068 
650 2 4 |a Operations Research/Decision Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/521000 
650 2 4 |a Industrial and Production Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T22008 
650 2 4 |a Engineering Design.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T17020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441944153 
776 0 8 |i Printed edition:  |z 9780387518909 
776 0 8 |i Printed edition:  |z 9780387718125 
830 0 |a International Series in Operations Research & Management Science,  |x 0884-8289 ;  |v 111 
856 4 0 |u https://doi.org/10.1007/978-0-387-71813-2 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)