Killer Cell Dynamics Mathematical and Computational Approaches to Immunology /

This book reviews how mathematics can be used in combination with biological data in order to improve understanding of how the immune system works. This is illustrated largely in the context of viral infections. Mathematical models allow scientists to capture complex biological interactions in a cle...

Full description

Main Author: Wodarz, Dominik. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Interdisciplinary Applied Mathematics, 32
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-68733-9
LEADER 04702nam a22005895i 4500
001 978-0-387-68733-9
003 DE-He213
005 20210706073409.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387687339  |9 978-0-387-68733-9 
024 7 |a 10.1007/978-0-387-68733-9  |2 doi 
050 4 |a QH323.5 
050 4 |a QH324.2-324.25 
072 7 |a PDE  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PDE  |2 thema 
082 0 4 |a 570.285  |2 23 
100 1 |a Wodarz, Dominik.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Killer Cell Dynamics  |h [electronic resource] :  |b Mathematical and Computational Approaches to Immunology /  |c by Dominik Wodarz. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a XIII, 220 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 32 
505 0 |a Viruses and Immune Responses: A Dynamical View -- Models of CTL Responses and Correlates of Virus Control -- CTL Memory -- CD4 T Cell Help -- Immunodominance -- Multiple Infections and CTL Dynamics -- Control versus CTL-Induced Pathology -- Lytic versus Nonlytic Activity -- Dynamical Interactions between CTL and Antibody Responses -- Effector Molecules and CTL Homeostasis -- Virus-Induced Subversion of CTL Responses -- Boosting Immunity against Immunosuppressive Infections -- Evolutionary Aspects of Immunity. 
520 |a This book reviews how mathematics can be used in combination with biological data in order to improve understanding of how the immune system works. This is illustrated largely in the context of viral infections. Mathematical models allow scientists to capture complex biological interactions in a clear mathematical language and to follow them to their precise logical conclusions. This can give rise to counter-intuitive insights which would not be attained by experiments alone, and can be used for the design of further experiments in order to address the mathematical results. This book provides both an introduction to the field of mathematical immunology, and an overview of many topics which are the subject of current research, covering a broad variety of immunological topics. It starts with basic principles of immunology and covers the dynamical interactions between the immune system and specific viral infections, including important human pathogens such as HIV. General biological and mathematical background material to both virus infection and immune system dynamics is provided, and each chapter begins with a simple introduction to the biological questions examined. This book is intended for an interdisciplinary audience. It explains the concept of mathematical modeling in immunology and shows how modeling has been used to address specific questions. It is intended both for the mathematical biologists who are interested in immunology, and for the biological readership that is interested in the use of mathematical models in immunology. Dominik Wodarz is an Associate Professor at the Department of Ecology and Evolutionary Biology at the University of California, Irvine. 
650 0 |a Biomathematics. 
650 0 |a Immunology. 
650 0 |a Ecology . 
650 0 |a Evolutionary biology. 
650 0 |a Cell biology. 
650 1 4 |a Mathematical and Computational Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31000 
650 2 4 |a Immunology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/B14000 
650 2 4 |a Ecology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L19007 
650 2 4 |a Theoretical Ecology/Statistics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L19147 
650 2 4 |a Evolutionary Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L21001 
650 2 4 |a Cell Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L16008 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441921659 
776 0 8 |i Printed edition:  |z 9780387511511 
776 0 8 |i Printed edition:  |z 9780387308937 
830 0 |a Interdisciplinary Applied Mathematics,  |x 0939-6047 ;  |v 32 
856 4 0 |u https://doi.org/10.1007/978-0-387-68733-9 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)