An Invitation to Morse Theory

This self-contained treatment of Morse Theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory (over the reals). The second part con...

Full description

Main Author: Nicolaescu, Liviu. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Universitext,
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-49510-1
LEADER 03005nam a22004935i 4500
001 978-0-387-49510-1
003 DE-He213
005 20210620095308.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387495101  |9 978-0-387-49510-1 
024 7 |a 10.1007/978-0-387-49510-1  |2 doi 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 514.74  |2 23 
100 1 |a Nicolaescu, Liviu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Invitation to Morse Theory  |h [electronic resource] /  |c by Liviu Nicolaescu. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a XIV, 242 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Morse Functions -- The Topology of Morse Functions -- Applications -- Basics of Complex Morse Theory -- Exercises and Solutions. 
520 |a This self-contained treatment of Morse Theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory (over the reals). The second part consists of applications of Morse theory over the reals, while the last part describes the basics and some applications of complex Morse theory, a.k.a. Picard-Lefschetz theory. This is the first textbook to include topics such as Morse-Smale flows, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The exposition is enhanced with examples, problems, and illustrations, and will be of interest to graduate students as well as researchers. The reader is expected to have some familiarity with cohomology theory and with the differential and integral calculus on smooth manifolds. Liviu Nicolaescu is Associate Professor of Mathematics at University of Notre Dame. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Global Analysis and Analysis on Manifolds.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12082 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M28027 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387517193 
776 0 8 |i Printed edition:  |z 9780387495095 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u https://doi.org/10.1007/978-0-387-49510-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)