|
|
|
|
LEADER |
03005nam a22004935i 4500 |
001 |
978-0-387-49510-1 |
003 |
DE-He213 |
005 |
20210620095308.0 |
007 |
cr nn 008mamaa |
008 |
100301s2007 xxu| s |||| 0|eng d |
020 |
|
|
|a 9780387495101
|9 978-0-387-49510-1
|
024 |
7 |
|
|a 10.1007/978-0-387-49510-1
|2 doi
|
050 |
|
4 |
|a QA614-614.97
|
072 |
|
7 |
|a PBKS
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a PBKS
|2 thema
|
082 |
0 |
4 |
|a 514.74
|2 23
|
100 |
1 |
|
|a Nicolaescu, Liviu.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
3 |
|a An Invitation to Morse Theory
|h [electronic resource] /
|c by Liviu Nicolaescu.
|
250 |
|
|
|a 1st ed. 2007.
|
264 |
|
1 |
|a New York, NY :
|b Springer New York :
|b Imprint: Springer,
|c 2007.
|
300 |
|
|
|a XIV, 242 p. 32 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Universitext,
|x 0172-5939
|
505 |
0 |
|
|a Morse Functions -- The Topology of Morse Functions -- Applications -- Basics of Complex Morse Theory -- Exercises and Solutions.
|
520 |
|
|
|a This self-contained treatment of Morse Theory focuses on applications and is intended for a graduate course on differential or algebraic topology. The book is divided into three conceptually distinct parts. The first part contains the foundations of Morse theory (over the reals). The second part consists of applications of Morse theory over the reals, while the last part describes the basics and some applications of complex Morse theory, a.k.a. Picard-Lefschetz theory. This is the first textbook to include topics such as Morse-Smale flows, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The exposition is enhanced with examples, problems, and illustrations, and will be of interest to graduate students as well as researchers. The reader is expected to have some familiarity with cohomology theory and with the differential and integral calculus on smooth manifolds. Liviu Nicolaescu is Associate Professor of Mathematics at University of Notre Dame.
|
650 |
|
0 |
|a Global analysis (Mathematics).
|
650 |
|
0 |
|a Manifolds (Mathematics).
|
650 |
|
0 |
|a Complex manifolds.
|
650 |
1 |
4 |
|a Global Analysis and Analysis on Manifolds.
|0 https://scigraph.springernature.com/ontologies/product-market-codes/M12082
|
650 |
2 |
4 |
|a Manifolds and Cell Complexes (incl. Diff.Topology).
|0 https://scigraph.springernature.com/ontologies/product-market-codes/M28027
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387517193
|
776 |
0 |
8 |
|i Printed edition:
|z 9780387495095
|
830 |
|
0 |
|a Universitext,
|x 0172-5939
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-0-387-49510-1
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|