An Introduction to the Mathematical Theory of Dynamic Materials

This book gives a mathematical treatment of a novel concept in material science that characterizes the properties of dynamic materials—that is, material substances whose properties are variable in space and time. Unlike conventional composites that are often found in nature, dynamic materials are mo...

Full description

Main Author: Lurie, Konstantin A. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Advances in Mechanics and Mathematics, 15
Subjects:
Online Access:https://doi.org/10.1007/0-387-38280-1
LEADER 04599nam a22006375i 4500
001 978-0-387-38280-7
003 DE-He213
005 20210625102447.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387382807  |9 978-0-387-38280-7 
024 7 |a 10.1007/0-387-38280-1  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Lurie, Konstantin A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to the Mathematical Theory of Dynamic Materials  |h [electronic resource] /  |c by Konstantin A. Lurie. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XVIII, 182 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mechanics and Mathematics,  |x 1571-8689 ;  |v 15 
505 0 |a A General Concept of Dynamic Materials -- An Activated Elastic Bar: Effective Properties -- Dynamic Materials in Electrodynamics of Moving Dielectrics -- G-closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation -- Rectangular Microstructures in Space-Time -- Some Applications of Dynamic Materials in Electrical Engineering and Optimal Design. 
520 |a This book gives a mathematical treatment of a novel concept in material science that characterizes the properties of dynamic materials—that is, material substances whose properties are variable in space and time. Unlike conventional composites that are often found in nature, dynamic materials are mostly the products of modern technology developed to maintain the most effective control over dynamic processes. These materials have diverse applications: tunable left-handed dielectrics, optical pumping with high-energy pulse compression, and electromagnetic stealth technology, to name a few. Of special significance is the participation of dynamic materials in almost every optimal material design in dynamics. The book discusses some general features of dynamic materials as thermodynamically open systems; it gives their adequate tensor description in the context of Maxwell’s theory of moving dielectrics and makes a special emphasis on the theoretical analysis of spatio-temporal material composites (such as laminates and checkerboard structures). Some unusual applications are listed along with the discussion of some typical optimization problems in space-time via dynamic materials. Audience This book is intended for applied mathematicians interested in optimal problems of material design for systems governed by hyperbolic differential equations. It will also be useful for researchers in the field of smart metamaterials and their applications to optimal material design in dynamics. 
650 0 |a Partial differential equations. 
650 0 |a Structural materials. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
650 0 |a Calculus of variations. 
650 0 |a Optics. 
650 0 |a Electrodynamics. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Structural Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z11000 
650 2 4 |a Optical and Electronic Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26016 
650 2 4 |a Classical Electrodynamics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P21070 
650 2 4 |a Vibration, Dynamical Systems, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15036 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781441942593 
776 0 8 |i Printed edition:  |z 9780387515779 
776 0 8 |i Printed edition:  |z 9780387382784 
830 0 |a Advances in Mechanics and Mathematics,  |x 1571-8689 ;  |v 15 
856 4 0 |u https://doi.org/10.1007/0-387-38280-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)