Ideals, Varieties, and Algorithms An Introduction to Computational Algebraic Geometry and Commutative Algebra /

Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions o...

Full description

Main Authors: Cox, David A. (Author, http://id.loc.gov/vocabulary/relators/aut), Little, John. (http://id.loc.gov/vocabulary/relators/aut), OSHEA, DONAL. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2007.
Edition:3rd ed. 2007.
Series:Undergraduate Texts in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-35651-8
LEADER 04720nam a22005775i 4500
001 978-0-387-35651-8
003 DE-He213
005 20210615201110.0
007 cr nn 008mamaa
008 130217s2007 xxu| s |||| 0|eng d
020 |a 9780387356518  |9 978-0-387-35651-8 
024 7 |a 10.1007/978-0-387-35651-8  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Cox, David A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ideals, Varieties, and Algorithms  |h [electronic resource] :  |b An Introduction to Computational Algebraic Geometry and Commutative Algebra /  |c by David A. Cox, John Little, DONAL OSHEA. 
250 |a 3rd ed. 2007. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2007. 
300 |a XV, 553 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
505 0 |a Geometry, Algebra, and Algorithms -- Groebner Bases -- Elimination Theory -- The Algebra–Geometry Dictionary -- Polynomial and Rational Functions on a Variety -- Robotics and Automatic Geometric Theorem Proving -- Invariant Theory of Finite Groups -- Projective Algebraic Geometry -- The Dimension of a Variety. 
520 |a Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manipulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. The algorithms to answer questions such as those posed above are an important part of algebraic geometry. Although the algorithmic roots of algebraic geometry are old, it is only in the last forty years that computational methods have regained their earlier prominence. New algorithms, coupled with the power of fast computers, have led to both theoretical advances and interesting applications, for example in robotics and in geometric theorem proving. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of Ideals, Varieties and Algorithms includes: A significantly updated section on Maple in Appendix C Updated information on AXIOM, CoCoA, Macaulay 2, Magma, Mathematica and SINGULAR A shorter proof of the Extension Theorem presented in Section 6 of Chapter 3 From the 2nd Edition: "I consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebraic geometry." -The American Mathematical Monthly. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Mathematical logic. 
650 0 |a Computer software. 
650 1 4 |a Algebraic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11019 
650 2 4 |a Commutative Rings and Algebras.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11043 
650 2 4 |a Mathematical Logic and Foundations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M24005 
650 2 4 |a Mathematical Software.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14042 
700 1 |a Little, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a OSHEA, DONAL.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387514857 
776 0 8 |i Printed edition:  |z 9781441922571 
776 0 8 |i Printed edition:  |z 9780387356501 
830 0 |a Undergraduate Texts in Mathematics,  |x 0172-6056 
856 4 0 |u https://doi.org/10.1007/978-0-387-35651-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)