Linear Genetic Programming

Linear Genetic Programming examines the evolution of imperative computer programs written as linear sequences of instructions. In contrast to functional expressions or syntax trees used in traditional Genetic Programming (GP), Linear Genetic Programming (LGP) employs a linear program structure as ge...

Full description

Main Authors: Brameier, Markus F. (Author, http://id.loc.gov/vocabulary/relators/aut), Banzhaf, Wolfgang. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New York, NY : Springer US : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Genetic and Evolutionary Computation,
Subjects:
Online Access:https://doi.org/10.1007/978-0-387-31030-5
LEADER 04394nam a22005655i 4500
001 978-0-387-31030-5
003 DE-He213
005 20210624235000.0
007 cr nn 008mamaa
008 100301s2007 xxu| s |||| 0|eng d
020 |a 9780387310305  |9 978-0-387-31030-5 
024 7 |a 10.1007/978-0-387-31030-5  |2 doi 
050 4 |a Q334-342 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
082 0 4 |a 006.3  |2 23 
100 1 |a Brameier, Markus F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Linear Genetic Programming  |h [electronic resource] /  |c by Markus F. Brameier, Wolfgang Banzhaf. 
250 |a 1st ed. 2007. 
264 1 |a New York, NY :  |b Springer US :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 316 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Genetic and Evolutionary Computation,  |x 1932-0167 
505 0 |a Fundamental Analysis -- Basic Concepts of Linear Genetic Programming -- Characteristics of the Linear Representation -- A Comparison with Neural Networks -- Method Design -- Linear Genetic Operators I — Segment Variations -- Linear Genetic Operators II — Instruction Mutations -- Analysis of Control Parameters -- A Comparison with Tree-Based Genetic Programming -- Advanced Techniques and Phenomena -- Control of Diversity and Variation Step Size -- Code Growth and Neutral Variations -- Evolution of Program Teams -- Epilogue. 
520 |a Linear Genetic Programming examines the evolution of imperative computer programs written as linear sequences of instructions. In contrast to functional expressions or syntax trees used in traditional Genetic Programming (GP), Linear Genetic Programming (LGP) employs a linear program structure as genetic material whose primary characteristics are exploited to achieve acceleration of both execution time and evolutionary progress. Online analysis and optimization of program code lead to more efficient techniques and contribute to a better understanding of the method and its parameters. In particular, the reduction of structural variation step size and non-effective variations play a key role in finding higher quality and less complex solutions. This volume investigates typical GP phenomena such as non-effective code, neutral variations and code growth from the perspective of linear GP. The text is divided into three parts, each of which details methodologies and illustrates applications. Part I introduces basic concepts of linear GP and presents efficient algorithms for analyzing and optimizing linear genetic programs during runtime. Part II explores the design of efficient LGP methods and genetic operators inspired by the results achieved in Part I. Part III investigates more advanced techniques and phenomena, including effective step size control, diversity control, code growth, and neutral variations. The book provides a solid introduction to the field of linear GP, as well as a more detailed, comprehensive examination of its principles and techniques. Researchers and students alike are certain to regard this text as an indispensable resource. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Theory of Computation.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16005 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
700 1 |a Banzhaf, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780387511610 
776 0 8 |i Printed edition:  |z 9781441940483 
776 0 8 |i Printed edition:  |z 9780387310299 
776 0 8 |i Printed edition:  |z 9781071600153 
830 0 |a Genetic and Evolutionary Computation,  |x 1932-0167 
856 4 0 |u https://doi.org/10.1007/978-0-387-31030-5 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)