

[COMPUTER SYSTEM ARCHITECTURE]

Arithmetic and Logic Unit (ALU)

After you enter data through the input device it is stored in the primary storage unit. The

actual processing of the data and instruction are performed by Arithmetic Logical Unit. The

major operations performed by the ALU are addition, subtraction, multiplication, division,

logic and comparison. Data is transferred to ALU from storage unit when required. After

processing the output is returned back to storage unit for further processing or getting stored.

Control unit (CU)

The next component of computer is the Control Unit, which acts like the supervisor seeing

that things are done in proper fashion. The control unit determines the sequence in which

computer programs and instructions are executed. Things like processing of programs stored

in the main memory, interpretation of the instructions and issuing of signals for other units of

the computer to execute them. It also acts as a switch board operator when several users

peripheral equipment as they perform the input and output. Therefore it is the manager of all

operations mentioned in the previous section.

Central processing unit (CPU)

The ALU and the CU of a computer system are jointly known as the central processing unit.

You may call CPU as the brain of any computer system. It is just like brain that takes all

major decisions, makes all sorts of calculations and directs different parts of the computer

functions by activating and controlling the operations.

[COMPUTER SYSTEM ARCHITECTURE]

A bus, in computing, is a set of physical connections (cables, printed circuits, etc.) which can

be shared by multiple hardware components in order to communicate with one another.

A bus is characterized by the amount of information that can be transmitted at once. This

amount, expressed in bits, corresponds to the number of physical lines over which data is sent

simultaneously. In reality, each bus is divided into three subassemblies (refer Figure 1.3):

The address bus (sometimes called the memory bus) transports memory addresses

which the processor wants to access in order to read or write data. It is a unidirectional

bus.

The data bus transfers instructions coming from or going to the processor. It is a

bidirectional bus.

The control bus (or command bus) transports orders and synchronization signals

coming from the control unit and travelling to all other hardware components. It is a

bidirectional bus, as it also transmits response signals from the hardware.

There are generally two buses within a computer:

a) Internal bus (system bus)

b) External bus (expansion bus)

The internal bus (sometimes called the front-side bus, FSB). An internal bus

connects all the internal components of a computer to the motherboard (and thus, the CPU

and internal memory). These types of buses are also referred to as a local bus

The external bus / expansion bus (sometimes called the input/output bus) allows

various motherboard components (USB, serial, and parallel ports, cards inserted in PCI

connectors, hard drives, CD-ROM and CD-RW drives, etc.) to communicate with one

[COMPUTER SYSTEM ARCHITECTURE]

another. However, it is mainly used to add new devices using what are called expansion

slots connected to the input/output bus.

Concept of Cache Memory

Introduction to cache memory

Cache memory is a special high-speed storage mechanism. It can be either a reserved
section of main memory or an independent high-speed storage device.

Figure 1.6: Cache and Main Memory

Types Of Cache Memory

The basic characteristic of cache memory is its fast access time. Therefore, very little or no
time must be wasted when searching for words in the cache. The transformation of data from
main memory to cache memory is refers to as a mapping process. Three types of mapping
procedures are of practical interest when considering the organization of cache memory is
direct, associative and set-associative mapped cache.

[COMPUTER SYSTEM ARCHITECTURE]

Direct Mapping

- Simplest technique
- maps each block of the main memory into one possible cache line

Figure 1.7: Direct Mapping

Associative Mapping
- Overcome the disadvantages of the direct mapped by permitting each main memory block
to be loaded into any line of cache

Figure 1.8: Associative Mapping

[COMPUTER SYSTEM ARCHITECTURE]

Input Output Devices

Input devices
-human data entry devices and source entry devices
-human entry devices(keyboard, mouse, joystick, digitizing tablet,..)
-source entry devices(microphone, sound

Output devices
-hardcopy and softcopy devices
-hardcopy devices(printer, plotter)
-

Input Output Module Diagram

Figure 1.11: Input Output Module Diagram

Configuration through I/O Module

CPU I/O Module I/O Device

[COMPUTER SYSTEM ARCHITECTURE]

Generic Model of Input Output Module

Figure 1.12: Model Input Output Module

Input Output Steps

1) CPU checks I/O module device status
2) I/O module returns status
3) If ready, CPU requests data transfer
4) I/O module gets data from device
5) I/O module transfers data to CPU

Input Output Data Transfer

Serial communication is the process of sending data one bit at a time, sequentially, over a
communication channel or computer bus.

Data is transmitted one byte at one time
Each frame contains 1 start bit,8 data bits, parity bit and 1 stop bit

Utilizes a transmitter, a receiver and a wire without coordination about its clock to
match the incoming signal

[COMPUTER SYSTEM ARCHITECTURE]

- Address of the I/O device involved
- The starting location of the block of the data in memory
- The size of the block to be transferred

The processor continue with other work. It has delegated this DMA module.
DMA module transfers the entire block of data, directly from memory without
involving processor.
After completing the data transfer, DMA modules sends interrupt signal to the
processor.
Processor only involved in beginning and end of the transfer

[COMPUTER SYSTEM ARCHITECTURE]

Small Computer System Interface (SCSI)

SCSI is a set of standards for physically connecting and transferring data between computers

and peripheral devices. The SCSI standards define commands, protocols, and electrical and

optical interfaces. SCSI is most commonly used for hard disks and tape drives, but it can

connect a wide range of other devices, including scanners and CD drives.

Figure 1.16: Adapter SCSI Card

[COMPUTER SYSTEM ARCHITECTURE]

0111 7 7 7

1000 8 8

1001 9 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Arithmetic Operation in Different Number Bases

Addition and subtraction rules for binary number

Basic rules of addition

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 with a carry of 1

Basic rules of subtraction

0 - 0 = 0

0 - 1 = 1 with a borrow of 1

1 - 0 = 1

1 - 1 = 0

[COMPUTER SYSTEM ARCHITECTURE]

a) Addition

Decimal number

Example:

Add the following decimal number:

i. 2510 + 8710

1 1

2 510 step1: 5 + 7 = 12-10 = 2
+ 8 710 step2: 1 + 2 + 8 = 11-10 = 1

1 1 210 step3

Octal number

Example:

Add the following octal number:

i. 3568 + 1248

1 1

3 5 68 step1: 6 + 4 = 10-8 = 2

+ 1 2 48 step2: 1 + 5 + 2 = 8-8=0

5 0 28 step3: 1 + 3 + 1 = 5

Exercise :

i) 19510 + 2310

ii) 89210 + 15810

Exercise :

i) 1238 + 3218

ii) 7338 + 748

[COMPUTER SYSTEM ARCHITECTURE]

Hexadecimal number

Example:

Add the following hexadecimal number:

i. C116 + E16

C 1 16 step1: 1 + 14 (E) = 15 (F)

+ E 16 step2: C

C F 16

Binary number

Example:

Add the following binary number:

i. 1012 + 112

1 1 1

1 0 1 2 step1: 1 + 1 = 0 carry 1

+ 1 1 2 step2: 1 + 0 + 1 = 0 carry 1

1 0 0 0 2 step3: 1 + 1 =0 carry 1
step4: 1

Exercise :

i) 2B16 + 8416

ii) DF16 +AC16

Exercise :

i. 10102 + 01112

ii. 101112 + 1112

[COMPUTER SYSTEM ARCHITECTURE]

b) Subtraction

Decimal number

Example:

Sub the following decimal number:

i. 7310 - 1910 = 5410.

6 10

7 3 10 step1: 10 + 3 = 13 9 = 4

- 1 9 10 step2: 6 1 = 5

5 4 10

Octal number

Example:

Sub the following octal number:

i. 628 - 538 = 078

5 8

6 2 8 step1: 8 + 2 =10-3 = 7

- 5 3 8 step2: 0

0 7 8

Exercise :

i. 25410 4610

ii. 19210 - 1510

Exercise :

i. 15238 - 3648

ii. 1458 - 648

[COMPUTER SYSTEM ARCHITECTURE]

Hexadecimal number

Example:

Sub the following octal number:

i. B216 B16 = A716

A 16

B 2 16 step1: 16+ 2 = 18-B(11) =7

- B 16 step2: A

A 716

Binary number

Example:

Sub the following binary number:

i. 1012 - 0112 = 0102

0

1 0 1 2 step1: 1 - 1 = 0

- 0 1 1 2 step2 : 0-1 = 1(borrow 1)

0 1 0 2 step3 : 0 0 = 0

Exercise :

i. 8416 2A16

ii. A2D16 5F16

Exercise :

i. 1002 12

ii. 1010112 - 11112

[COMPUTER SYSTEM ARCHITECTURE]

Numbering system conversion

Binary-To-Decimal Conversion

To express the value of a given binary number as its decimal equivalent, we just need

to sum the digits after each has been multiplied by its associated weight

Example:

Convert 100.0102 to decimal number.

Solution:

Weight : 22 21 20 2-1 2-2 2-3

Binary number : 1 0 0 . 0 1 0

100.0102 = (1 X 22) + (1 X 2-2)

= 4 + 0.25

= 4.2510

Exercise :

i) 1101012

ii) 0.10112

[COMPUTER SYSTEM ARCHITECTURE]

Octal-To-Decimal Conversion

Example:

Convert 372.248 to decimal number.

Solution:

Weight : 82 81 80 8-1 8-2

Octal number : 3 7 2 2 4

372.248 = (3 X 82) + (7 X 81) + (2 X 80) + (2 X 8-1) + (4 X 8-2)

= 192 + 56 + 2 + 0.25 +0.0625

= 250.312510

Decimal-To- Octal Conversion

Example:

Convert 82.710 to octal number.

Solution:

8 82

8 10 - 2

8 1 - 2

0 - 1

0.7 X 8 = 5.6 - 5

0.6 X 8 = 4.8 - 4

0.8 X 8 = 6.4 - 6

82.710 = 122.5468

Exercise :

i) 258

ii) 237.048

Exercise :

i) 5810

ii) 300.3410

[COMPUTER SYSTEM ARCHITECTURE]

Hexadecimal-To-Decimal Conversion

Example:

Convert 7E7.716 to decimal number.

Solution:

Weight : 162 161 160 16-1

Hexadecimal number : 7 E 7 7

7E7.716 = (7 X 162) + (E X 161) + (7X 160) + (7 X 16-1)

= 1792 + 224 + 7 + 0.4375

= 2023.437510

Decimal-To- Hexadecimal Conversion

Example:

Convert 2748.7810 to hexadecimal number.

Solution:

16 2748

16 171 - 12(C)

16 10 - 11 (B)

0 - 10(A)

0.78 X 16 = 12.48 - 12(C)

0.48 X 16 = 7.68 - 7

0.68 X 16 = 10.88 - 10(A)

2748.7810 = ABC.C7A16

Exercise :

i) AF216

ii) 25E816

Exercise :

i) 137510

ii) 650.2010

[COMPUTER SYSTEM ARCHITECTURE]

Binary-To-Octal Conversion

Each octal digit is represented by a 3 bit binary digit.

Example:

Convert 11000112 to octal number.

Solution:

421

001

421

100

421

011

1 4 3

11000112 = 1438

Octal-To- Binary Conversion

One (1) octal digit can be represented by three digit binary number.

Example:

Convert 258 to binary number.

Solution:

2 5
421

010

421

101

258 = 0101012

Exercise :

i) 01.011102

ii) 1101.100011102

Exercise :

i) 12.58

ii) 37.128

[COMPUTER SYSTEM ARCHITECTURE]

Binary-To-Hexadecimal Conversion

Break the binary digits into groups of four starting from LSB.

It may be necessary to add a zero as the MSB in order to complete a grouping of four

digits.

Example:

Convert 1012 to hexadecimal number.

Solution:

8 4 2 1

1 0 1

5

1012 = 516

Hexadecimal-To- Binary Conversion

One (1) hexadecimal digit can be represented by four digit binary number.

Example:

Convert 3A16 to binary number.

Solution:

3 A
8 4 2 1

0011

8 4 2 1

1010

3A16 = 1110102

Exercise :

i) 10101112

ii) 11.1000111102

Exercise :

i) FB1716

ii) 12D.216

[COMPUTER SYSTEM ARCHITECTURE]

[COMPUTER SYSTEM ARCHITECTURE]

Coding System

a) Sign and magnitude

The left most bit is the sign bit and the remaining bit are the magnitude bits. The

magnitude bit is in true binary for both positive and negative numbers.

Example:

Express the decimal number -39 as an 8 bit number in the sign-magnitude, 1st

Complement and 2nd Complement Form.

Solution:

First, write the 8 bit number of +39

+39 = 001001112

In the Sign-Magnitude Form, -39 is produced by changing the sign bits to a 1 and leaving

the magnitude as they are.

+39 = 0 0100111

Sign bit magnitude bits

-39 = 10100111 (Sign-Magnitude Form)

b)

Positive numbers in 1st Complement Form are represented the same way as in

Signs Magnitude Form. Negative numbers, however, are the 1st Complement of

the corresponding positive number.

Exercise :

i) -2510
ii) +7010

[COMPUTER SYSTEM ARCHITECTURE]

In the 1st Complement Form, -39 is produced by taking the 1st Complement of +39

(00100111) and changing bit 0 into 1 and bit 1 into 0.

Use only in binary number

+39 = 00100111
= 11011000 (1st Complement Form)

Example:

Add the following number using 1st Complement Form

810 + (-310)

i. Convert 810 and -310 into N2

810 10002
-310 +3 00112

-3 11002 (1
st Complement)

ii. Solve 810 + (-310)

1 0 0 0
+ 1 1 0 0
1 0 1 0 0

+ 1
0 1 0 1 = 510
8 4 2 1

OR

810 + (-310) = 8 - 3
= 510

01012

Exercise :

i. 3210
ii. 11410
iii. 110012 - 100112

[COMPUTER SYSTEM ARCHITECTURE]

c) 2nd Complement Form

Positive numbers in 2nd Complement Form are represented the same way as in

Signs Magnitude Form and 1st Complement Form. Negative numbers are the 2nd

Complement of the corresponding positive number.

In the 2nd Complement Form, -39 is produced by taking the 2nd Complement of

+39 as follows.

11011000 (1st Complement Form)

+ 1
11011001 (2nd Complement Form)

Example:
Add the following number using 2nd Complement Form

810 + (-310)

i. Convert 810 and -310 into N2

810 10002
-310 +3 00112

-3 11002 (1
st Complement)

1 1 0 0
+ 1

2nd

Complement 1 1 0 12

ii. Solve 810 + (-310)

1 0 0 0
+ 1 1 0 1

Ignore 1 0 1 0 1 = 510
8 4 2 1

Exercise :

100110012
2710

[COMPUTER SYSTEM ARCHITECTURE]

d) Binary Coded Decimal (BCD 8421 Code)

- A way to express each of the decimal digits with a binary code.

- Binary Coded Decimal means that each decimal digit, 0 through 9 is represented by a

binary code of four bits.

- The designation 8421 indicates the binary weights of the four bits (23, 22, 21, 20).

- Invalid codes : 1010, 1011, 1100, 1101 , 1110 , 1111

Table 2: Decimal digit and BCD 8421 Code

Decimal Digit BDC 8421

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

.

.
.
.

24 0010

BCD 8421-To-Binary Conversion

Example:
Convert 1001 0110BCD8421 to binary number.

i. Convert BCD 8421 N10

1001 0110
9610

9 6

BCD8421 Decimal Binary

[COMPUTER SYSTEM ARCHITECTURE]

Binary-To-BCD 8421Conversion

Example:

Convert 10010102 to BCD 8421 Code.

i. Convert N2 N10

10010102 = (1 X 26) + (1 X 23) + (1 X 21)

= 64 + 8 + 2

= 7410

ii. Convert N10 NBCD8421

7410 7 4
01110100 BCD8421

0111 0100

e) ASCII Code

ASCII Code

American Standard Code for Information interchange

ii. 9610 N2

2 96
2 48 - 0
2 24 - 0
2 12 - 0
2 6 - 0
2 3 - 0
2 1 - 1

0 - 1
9610 = 11000002

Exercise :

i. 1000 0011BCD8421

Exercise :

i. 1100 10102

Binary Decimal BCD8421

[COMPUTER SYSTEM ARCHITECTURE]

Is an alphanumeric code used in most computers and other electronic equipment.

ASCII has 128 characters and symbols represented by a 7 bit binary code.

Represent number, alphabet and symbol.

Table 3: ASCII Code

X6X5X4

X3X2X1X0 010 011 100 101 110 111
0000 SP 0 @ P ` p
0001 ! 1 A Q a q
0010 2 B R b r
0011 # 3 C S c s
0100 $ 4 D T d t
0101 % 5 E U e u
0110 & 6 F V f v
0111 7 G W g w
1000 (8 H X h x
1001) 9 I Y i y
1010 * : J Z j z
1011 + ; K [k {
1100 , < L \ l |
1101 - = M] m }
1110 . > N ^ n ~
1111 / ? O o DEL

Example 1:

Convert GOTO 25 into ASCII Code

Solution:

G - 1000111
O - 1001111
T - 1010100
O - 1001111
SP 0100000
2 - 0110010
5 - 0110101

Example 2:

Message below are represented in ASCII code. What is the message.

1000100 1101001 1100111 1101001 1110100

Exercise :

i. DIP2-S1
ii. 1010000 1001111

1001100 1001001

[COMPUTER SYSTEM ARCHITECTURE]

BOOLEAN ALGEBRA

Logic Gates

- A logic gate is an electronic circuit / device which makes the logical decisions.

- All other logic functions can ultimately be derived from combinations of these three.

- Digital (logic) circuit operate in the binary mode where each input and output voltage is

either a 0 or a 1: the 0 and 1 designation represent predefined voltage ranges. In electronic

- This characteristic of logic circuits allows us to use the Boolean Algebra as a tool for the

analysis and design of digital systems.

- Boolean Algebra is a relatively simple mathematical tool that allows us to describe the

relationship between logic circuits output and its input as an algebraic equation (a

Boolean Expression).

- 7 types of logic gate are:

i) NOT Gate (Inverter)

ii) AND Gate

iii) OR Gate

iv) NAND Gate

v) NOR Gate

vi) Exclusive-OR Gate (Ex-OR)

vii) Exclusive-NOR Gate (Ex-NOR)

a) Logic Gates Operation

a) NOT Gate (Inverter)

- The Inverter (NOT Gate) performs the operation called inversion or complementation.

- It changes one logic level to the opposite level. In terms of bit, it changes a 1 to a 0 and a

0 to a 1.

- Standard logic symbol for inverter

[COMPUTER SYSTEM ARCHITECTURE]

- Inverter truth table

Total number of possible input
(2n)

2n = 21

= 2

Maximum value (2n 1)
2n 1 = 21 1

= 2 1

= 1

Input Output
A Y
0 1
1 0

- Boolean/Logic Expression

AY

b) AND Gate

An AND gate can have two or more inputs but only one output.

Its output is true if all inputs are true.

Standard logic symbol for AND Gate

[COMPUTER SYSTEM ARCHITECTURE]

- Truth table for a 2-input AND Gate

Total number of possible input
(2n)

22 = 22

= 4

Maximum value (2n 1)
2n 1 = 22 1

= 4 1

= 3

Input Output
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

- Boolean/Logic Expression

ABBAY .

c) OR Gate

An OR gate can have two or more inputs but only one output.

Its output is true if at least one input is true.

Standard logic symbol for OR Gate

- Truth table for a 2-input OR Gate

Total number of possible input
(2n)

22 = 22

= 4

Maximum value (2n 1)
2n 1 = 22 1

= 4 1

= 3

[COMPUTER SYSTEM ARCHITECTURE]

Input Output
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

- Boolean/Logic Expression

BAY

d) NAND Gate

This is an AND gate with the output inverted, as shown by the 'o' on the output.

A NAND gate can have two or more inputs.

Its output is true if NOT all inputs are true.

Standard logic symbol for NAND Gate

- Truth table for a 2-input NAND Gate

Total number of possible input (2n) = 4

Maximum value (2n 1) = 3

Input Output
A B Y
0 0 1
0 1 1
1 0 1
1 1 0

- Boolean/Logic Expression

BAY .

[COMPUTER SYSTEM ARCHITECTURE]

e) NOR Gate

This is an OR gate with the output inverted, as shown by the 'o' on the output.

A NOR gate can have two or more inputs.

Its output is true if no inputs are true.

Standard logic symbol for NOR Gate

- Truth table for a 2-input NOR Gate

Total number of possible input (2n) = 4

Maximum value (2n 1) = 3

Input Output
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

- Boolean/Logic Expression

BAY

f) EXCLUSIVE-OR Gate (EX-OR)

EX-OR gates can only have 2 inputs.

This is like an OR gate but excluding both inputs being true.

The output is true if inputs A and B are DIFFERENT.

Standard logic symbol for NOR Gate

[COMPUTER SYSTEM ARCHITECTURE]

- Truth table for a 2-input NOR Gate

Total number of possible input (2n) = 4

Maximum value (2n 1) = 3

Input Output
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

Boolean/Logic Expression

BAY

BABA

Logic Circuit

g) EXCLUSIVE-NOR Gate (EX-NOR)

This is an EX-OR gate with the output inverted, as shown by the 'o' on the output.

EX-NOR gates can only have 2 inputs.

The output is true if inputs A and B are the SAME (both true or both false)

Standard logic symbol for NOR Gate

[COMPUTER SYSTEM ARCHITECTURE]

- Truth table for a 2-input NOR Gate

Total number of possible input (2n) = 4

Maximum value (2n 1) = 3

Input Output
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

- Boolean/Logic Expression

BAY

ABBA

Logic Circuit

[COMPUTER SYSTEM ARCHITECTURE]

Sequential Logic Circuit

- Sequential logic differs from combinational logic in that the output of the logic device is

dependent not only on the present inputs to the device, but also on past inputs; i.e., the

output of a sequential logic device depends on its present internal state and the present

inputs. This implies that a sequential logic device has some kind of memory of at least

part of its ``history'' (i.e., its previous inputs).

- The memory elements in a sequential circuit are called flip-flops (FF). A flip-flop circuit

has two outputs, one for the normal value and one for the complement value of the

stored bit. Binary information can enter a flip-flop in a variety of ways and gives rise to

different types of flip-flops. Flip-flops can be use as counter, register, memory devices

and logic control circuits.

- 5 types of flip-flops are:

a. SR Flip-Flop

b. Clocked SR Flip-Flop

c. JK Flip-Flop

d. T Flip-Flop

e. D Flip-Flop

SR Flip-Flop

- A flip-flop circuit can be constructed from two NAND gates (Active Low) or two NOR

gates (Active High). Each flip-flop has two outputs, Q and Q', and two inputs, set and

reset. This type of flip-flop is referred to as an SR flip-flop.

a) SR NAND Flip-flop (Active Low)

Symbol

[COMPUTER SYSTEM ARCHITECTURE]

Truth Table

INPUT OUTPUT
COMMENTS

S R Q
0 0 0/1 Invalid
0 1 1 Set (1)
1 0 0 Reset (0)
1 1 0/1 No change

Note : Invalid (Q=Q=1)

Logic Circuit

Timing Diagram

Example 1:

If S and R waveform are applied to the input below, determine the waveform that will be

observed on the Q and Q output.

[COMPUTER SYSTEM ARCHITECTURE]

b) SR NOR Flip-flop (Active High)

Symbol

Truth Table

INPUT OUTPUT
COMMENTS

S R Q

0 0 0/1 No change

0 1 0 Reset (0)

1 0 1 Set (1)

1 1 0/1 Invalid

Logic Circuit

Timing Diagram

Example 1:

If S and R waveform are applied to the input below, determine the waveform that will be

observed on the Q and Q output.

[COMPUTER SYSTEM ARCHITECTURE]

Timing Diagram

Example 1:

Determine the waveform that will be observed on the Q and Q output of this Active High

Clocked SR flip-flop. Assume Q0 = 0 and positive edge trigger clock.

JK Flip-Flop

- A JK flip-flop is a refinement of the SR flip-flop in that the invalid state of the SR type is

defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-

flop (note that in a JK flip-flop, the letter J is for set and the letter K is for clear). When

logic 1 inputs are applied to both J and K simultaneously, the flip-flop switches to its

complement state, ie., if Q=1, it switches to Q=0 and vice versa. This is also known as

Toggle.

Symbol

Truth Table

INPUT OUTPUT
COMMENTS

J K Q

0 0 0/1 No change

0 1 0 Reset (0)

[COMPUTER SYSTEM ARCHITECTURE]

1 0 1 Set (1)

1 1 0/1 Toggle

Logic Circuit

Timing Diagram

Example 1:

If J and K waveform are applied to the input below, determine the waveform that will be

observed on the Q and Q output. Assume Q0 = 0 and Negative edge trigger clock.

Flip-Flop (TOGGLE)

- The T flip-flop is a single input version of the JK flip-flop. The T flip-flop is obtained

from the JK type if both inputs are tied together. The output of the T flip-flop "toggles"

with each clock pulse.

[COMPUTER SYSTEM ARCHITECTURE]

Symbol

Truth Table

INPUT OUTPUT

T Q

0 No change

1 Toggle

Logic Circuit

Timing Diagram

Example 1:

If T waveform is applied to the input below, determine the waveform that will be observed on

the Q and Q output. Assume Q0 = 0 and Positive edge trigger clock.

[COMPUTER SYSTEM ARCHITECTURE]

D Flip-Flop

- The D flip-flop is a modification of the clocked SR flip-flop. The D input is sampled

during the occurrence of a clock pulse. If it is 1, the flip-flop is switched to the set state

(unless it was already set). If it is 0, the flip-flop switches to the clear state.

Symbol

Truth Table

Logic Circuit

Timing Diagram

Example 1:

If D waveform is applied to the input below, determine the waveform that will be observed

on the Q and Q output. Assume Q0 = 0 and Positive edge trigger clock.

[COMPUTER SYSTEM ARCHITECTURE]

Registers

In a computer, a register is one of a small set of data holding places that are part of a

computer processor . A register may hold a computer instruction , a storage address, or any

kind of data (such as a bit sequence or individual characters). Some instructions specify

registers as part of the instruction. For example, an instruction may specify that the contents

of two defined registers be added together and then placed in a specified register. A register

must be large enough to hold an instruction - for example, in a 32-bit instruction computer, a

register must be 32 bits in length. In some computer designs, there are smaller registers - for

example, half-registers - for shorter instructions. Depending on the processor design and

language rules, registers may be numbered or have arbitrary names.

Categories of registers

Registers are normally measured by the number of bits they can hold, for example, an "8-bit

register" or a "32-bit register". A processor often contains several kinds of registers, that can

be classified accordingly to their content or instructions that operate on them:

User-accessible registers instructions that can be read or written by machine

instructions. The most common division of user-accessible registers is into data registers

and address registers.

Data registers can hold numeric values such as integer and, in some architectures,

floating-point values, as well as characters, small bit arrays and other data. In some

older and low end CPUs, a special data register, known as the accumulator, is used

implicitly for many operations.

[COMPUTER SYSTEM ARCHITECTURE]

Address registers hold addresses and are used by instructions that indirectly access

primary memory.

Memory Organisation

Introduction To Computer Memory

In computing, memory refers to the physical devices used to store programs (sequences of

instructions) or data (e.g. program state information) on a temporary or permanent basis for

use in a computer or other digital electronic device.

Primary vs Secondary Memory Storage Devices

- Primary memory or the main memory is the memory that is directly accessed by the

CPU to store and retrieve information. The primary memory itself is implemented by two

types of memory technologies. The first is called Random Access Memory (RAM) and

the other is read only memory (ROM)

- Secondary memory (mass memory/external memory/auxiliary memory) is a storage

device that is not accessible directly by the CPU and used as a permanent storage device

that retains data even after power is turned off. Hard drives, floppy disks, tapes, and

optical disks are widely used for secondary storage.

[COMPUTER SYSTEM ARCHITECTURE]

INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING

Instruction and Instruction Set

An instruction is a binary pattern designed inside a microprocessor to perform a specific
function. The entire group of instructions that a microprocessor supports is called
Instruction Set Eg. 8085 microprosessor has 246 instructions represented by 8 bit binary
value. The 8 bit of binary value is called op-code or instruction byte.

Instruction set: the set of instructions that are interpreted directly in the hardware by the
CPU. These instructions are encoded as bit strings in memory and are fetched and executed
one by one by the processor. They perform primitive operations such as "add 2 to register
i1", "store contents of o6 into memory location 0xFF32A228", etc. Instructions consist of an
operation code (opcode) e.g., load, store, add, etc., and one or more operand addresses.

Computers with different microarchitectures can share a common instruction set

Eg. the Intel Pentium and the AMD Athlon implement nearly identical versions of the x86

instruction set, but have radically different internal designs

Classification of instruction set.

Instructions set can be classified into the following seven functional categories:

1. Data movement instructions
2. Compare instructions
3. Branch instructions
4. Arithmetic Instructions
5. Logic Instructions
6. Bit Manipulation Instructions
7. Shift and rotation
8. Stack and Subroutine Related Instructions

[COMPUTER SYSTEM ARCHITECTURE]

Compare instructions

All compare instructions subtract the source operand, usually the contents of one register
(or memory location) from the contents of the destination operand, usually another
register (or memory location) in order to set the CCR (except the X-bit). The results of
the subtraction are discarded.

Compare instructions include the following:

CMP Source operand: Any of the addressing modes
Destination: Must be a data register.

CMPA Source operand: Any of the addressing modes
Destination: Must be an address register.

CMPI Source operand: An immediate value
Destination: Any of the addressing modes except address register direct
or immediate.

CMPM Compares one memory location with another
Only addressing mode permitted is address register indirect with auto-
incrementing.

Data movement instructions

These instructions move data from one place to another.
Data movement instructions include the following:

EXG (EXchanGe) The contents of two registers will be exchanged
LEA (Load Effective Address) Calculates a memory location and store it in

an address register.
LINK Allocates a stackframe.
MOVE Copies the contents in one register/memory location to another register

or another memory location.
MOVEA (MOVE Address) Same as MOVE except that the destination is an

address-register.
MOVEM (MOVEMultiple) transfers many registers to or from the memory.
MOVEP (MOVE Peripheral) transfers data to or from an 8 bits peripheral unit.
MOVEQ (MOVE Quick) puts a constant in a dataregister.

PEA (Push Effective Address) calculates a memory address and stores it on
the stack.

SWAP Swaps the word in a dataregister.

[COMPUTER SYSTEM ARCHITECTURE]

word to longword
MULS, MULU Multiplication, signed and unsigned.
NEG, NEGX Twocomplements a number
SUB, SUBA, SUBI, SUBQ, SUBQ Different kinds of subtraction.
TAS (Test And Set) used to synchronise more

than one processor
TST Compares an operand with 0.

Logic Instructions

These instructions perform various logical operations (AND, OR Exclusive-OR,
Rotate, Compare and Complement) with the contents of the accumulator.

These operations perform logical operations on binary numbers. A logical operation
is either "true" (1) or "false" (0).

AND, ANDI Logical AND on two binary integers
OR, ORI Logical OR
EOR, EORI Exclusive OR (XOR)
NOT Returns the operans onecomplement (0 -> 1, 1 -> 0)

Bit Manipulation Instructions

These instructions affect single bits in a byte. All instructions test the bit before
affecting it.

BTST Tests a bit
BSET Tests a bit, then set it (1)
BCLR Tests a bit, then reset it (0)
BCHG Tests a bit, then invert it (0 -> 1, 1 -> 0)

Stack and Subroutine Related Instructions

These instructions contain branches, jumps, calls.

Bcc A group of 15 instruction that branches depending on the flags.
DBcc 15 instructions that perform loops.
Scc 16 instructions that will set/reset a byte depending on the flags.
BSR, JSR Subroutine calls.

[COMPUTER SYSTEM ARCHITECTURE]

Assembly language

Programs written in high-level languages are translated into assembly language or machine
language by a compiler. Assembly language programs are translated into machine language
by a program called an assembler.

Low-level programming language for computers, microprocessors, microcontrollers, and
other programmable devices. Implements a symbolic representation of the machine codes and
other constants needed to program a given CPU architecture.

Used to translate assembly language statements into the target computer's machine code.
Translation (a one-to-one mapping) from mnemonic statements into machine instructions and
data.

The Addressing Modes Using Proper Instruction Format

Instruction format

Instructions are listed by mnemonic in alphabetical order. The information provided about
each instruction is: its assembler syntax, its attributes (i.e., whether it takes a byte, word,
or longword operand), its description in words, the effect its execution has on the
condition codes, and the addressing modes it may take.

The most common fields in instruction formats are:
1. Mode field: Specifies the way the effective address is determined
2. Operation code: Specifies the operations to be performed.
3. Address field: Designates a memory address or a processor register

Example of instruction format:

Mode Opcode Address

ULANG CLR.W D0; JUMLAH=0

Label op-code operands comment

[COMPUTER SYSTEM ARCHITECTURE]

3. Immediate addressing with data registers

4. Immediate addressing with address registers

5. Indirect addressing

6. Address Register Indirect Addressing

This addressing mode uses the 8 address registers. These registers are assumed to contain the
address of the data rather than the data itself.

CLR.B (A0)
Similar to indirect addressing. Address field of the instruction refers to a register.
The register contains the effective address of the operand.The address space is limited to the
width of the registers available to store the effective address.

7. Address Register Indirect with Post-incrementing

A variation of address register indirect in which the operand address is incremented after the
operation is performed.
The syntax is (Ai)+

[COMPUTER SYSTEM ARCHITECTURE]

8. Address Register Indirect with Pre-decrementing

A variation of address register indirect in which the operand is decremented before the
operation is performed.
The syntax is -(Ai)

Assembly Language Instruction

Series of statements which are either assembly language instructions or directives.

Instructions are statements like ADD, SUB which are translated into machine code.

Directives or pseudo-instructions are statements used by the programmer to direct the

assembler on how to proceed in the assembly.

Statement format:

[label:] mnemonic [operands][;comments]

Example of instruction format:

LOOP CLR.W D0 ;TOTAL = 0

Label:

Cannot exceed 31 characters

Consists:

Alphabetic characters both upper and lower case

Digits 0 through 9

comments start with semicolon, continue until end of line
The first character cannot be a digit

One instruction per line of code

Spacing: at least one space required after each instruction (mnemonic or pseudo-op),
and last line of program must be END pseudo-op.

[COMPUTER SYSTEM ARCHITECTURE]

Label:

Must end with a colon when it refers to an opcode generating instruction. Do not
need to end with a colon when it refers to a directive.

Mnemonic and operands:

Instructions are translated into machine code. Directives do not generate machine
code. They are used by the assembler to organize the program and direct the assembly
process.

Comments:

; and its ignored by the assembler.

Comment should be on a line by itself or at the end of a line:

Eg: ;My first comment

Indispensable to the programmers because they make it easier for someone to read
and understand the program

General pseudo-op

ORG

The function of ORG (origin) is to set an address of instruction or data.
The format: ORG address
Example: ORG $2000

EQU

The function of EQU (equate) is to give a value for certain symbol.
The format: Symbol EQU value
Example: SIZE EQU 20

DC

The function of DC (define constant) is to fill in certain values in a memory.
The format: [label] DC.data_size value
Example: ORG $2000

[COMPUTER SYSTEM ARCHITECTURE]

DC.W 3
DC.B $23,49
DC.L 10
DC.W 1,4,9,16

002000 00 03 DC.W 3
002002 23 49 DC.B $23,49
002004 00 00

DC.L 10
002006 00 0A
002008 00 01

DC.W
1,4,9,16

00200A 00 04
00200C 00 09
00200E 00 10

Figure 2: A memory location of the sequence above

DS

The function of DS (define storage) is almost like to DC command. However it will
not fill any information to the memory.
The format: [label] DC.data_size value
Example: ARRAY DS.W 1

STRING DS.B 8
PTR DS.L 1

002000 00 00 DS.W 1
002002 00 00 DS.B 8
002004 00 00
002006 00 00
002008 00 00
00200A 00 00 DS.L 1
00200C 00 00

Figure 3: A memory location of the sequence above
END

The function of END is to tell the assembler that the program has ended.
The format: END [label]

[COMPUTER SYSTEM ARCHITECTURE]

Simple program in assembly language program

Data sizes

68000 instructions can direct the processor to work on five data types:

a) bit
b) Binary Coded Decimal (BCD - 4 bits)
c) Byte (8 bits)
d) Word (16 bits)
e) Longword (32 bits)

Bit:
Most basic representation.
Contains either 0 or 1.
Can be grouped together to represent more meaning.

Nibble: 4 bits.
Can represent 16 values (24).
Not recognized in M68k.
Need to write special program to handle.

Byte: 8 bits.

Can hold value up to 256 (28).

Word: 16 bits.
Length of most instructions in M68k.
Can hold value up to 65,535 (216).

Long Word: 32 bits.
Length of data registers in M68k.
Can hold value up to 4,294,967,296 (232).

Note:
$ = value for hexadecimal
@ = value for octal
% = value for binary
& or blank = decimal

[COMPUTER SYSTEM ARCHITECTURE]

Data Register Direct

MOVE.B D0,D3

MOVE.W D0,D3

Bit (1)

Nibble
(4)

D3 D0

Byte
(8)

D7 D0

D15 D0
Word
(16)

Long
(32)

D31 D0

Only bit 0-7 involved in this case because this
operation only involved in byte

[COMPUTER SYSTEM ARCHITECTURE]

MOVE.L D0,D3

Address Register Direct

MOVEA.L A3,A0

MOVEA.W A3,A0

Absolute Long Mode

CLR.B $10000

[COMPUTER SYSTEM ARCHITECTURE]

Immediate

MOVE.L #$1FFFF, D0

Quick Immediate

2. MOVEQ #$8F, D3

[COMPUTER SYSTEM ARCHITECTURE]

Arithmetic operation

The basic arithmetic operations are addition (+), subtraction (-), multiplication (x) and
division (/)

Example 1: ADD.B D0, D1
Before : D0 = 00000011 , D1 = 00000022
After : D0 = 00000011 , D1 = 00000033

Example 2: ADD.W #$A2,D1
Before : D1 = 00100500
After : D1 = 001005A2

Example 3 :
ADD.L D0,D1
Before : D0 = 10001111 , D1 = 00002222
After : D0 = 00001111 , D1 = 10003333

Example 4 : ADD.W $1000,D1
Before : D1 = 00110051
After : D1 = 00110081

Example 5: SUB.W #$80,D3
Before : D3 = $001122AB
After : D3 = $0011222B

Example 6: SUB.W D0, D1
Before : D0 = 00001111 , D1 = 00002222
After : D0 = 00000011 , D1 = 00001111

Logic operation

The logic operations are OR, AND and NOT.

Example 1 : AND.B #$3E,D1
Before : D1 = $12345674
After : D1 = $12345634

$1000 30 31

$1002 33 34

$1004 35 36

[COMPUTER SYSTEM ARCHITECTURE]

Example 2: OR.B D0,D1
Before : D1 = $1234563E , D0 = $98765474
After : D1 = $1234567E , D0 = $98765474

Simple Program

ORG $1000

MOVE.B #$1, D0
MOVE.B #$2, D1
MOVE.B #@3, D2

SUB D0, D1
SUB D1,D2

END

OUTPUT

MOVE.B #$1, D0 D0 = 00000001
MOVE.B #$2, D1 D1 = 00000002
MOVE.B #@3, D2 D2 = 00000003

SUB D0, D1 D1 = 00000001
SUB D1,D2 D2 = 00000002

[COMPUTER SYSTEM ARCHITECTURE]

Exercise 1:

Write a program to add the content 200, 202 AND 204 where each variable A, B and C.
assume that the program starts at address $2000.

Exercise 2:

Write a program to add together two 8-bit numbers stored in the memory locations called
NILAI1 and NILAI2, and stores the sum in the memory location called KEPUTUSAN using
an assembly language. Assume value for NILAI1 is 100 and NILAI2 is 200.

Introduction to EASy68K Cross Assembler and Simulator

[COMPUTER SYSTEM ARCHITECTURE]

Click to assemble the source

Assembler status will pop up
and make sure the Error = 0

Click Execute to execute the
code

[COMPUTER SYSTEM ARCHITECTURE]

The first line of the code
pointed by PC declared by
the END START directive

The simulated
register

To see what your
program has

displayed, select the
View menu and then

click "Output
Window"

[COMPUTER SYSTEM ARCHITECTURE]

Instruction cycle

The time period during which one instruction is fetch from memory and execute when a
computer given an instruction in machine language. Each instruction is further divided into
sequence of phases. After the execution the program counter is incremented to point to the
next instruction.

Phase of cycle : - Fetch cycle
- Decode cycle
- Execute cycle

Figure 2: Instruction cycle

Figure 3: Fetch and execute cycle

Fetch Cycle

Takes the address required from memory, stored it in the instruction register
and moves the program counter
Program Counter (PC) holds address of next instruction to fetch
Processor fetches instruction from memory location pointed to by PC

[COMPUTER SYSTEM ARCHITECTURE]

Decode Cycle

Figure out what the program is telling the computer to do
Here, the control unit checks the instruction that is now stored within the
instruction register
It determines which opcode and addressing mode have been used and as such
what actions need to be carried out in order to execute the instruction in
question

Execute Cycle

Perform the requested action
The actual actions which occur during the execute cycle of an instruction
depend on both the instruction itself and the addressing mode specified to be
used to access the data that may be required

Four categories of actions

1. Processor-memory
data transfer between CPU and main memory

2. Processor I/O
Data transfer between CPU and I/O module

3. Data processing
Some arithmetic or logical operation on data

4. Control
Alteration of sequence of operations (e.g. jump)
Instruction execution may involve a combination of these

Figure 4 : How a CPU works Fetch Execute Cycle

[COMPUTER SYSTEM ARCHITECTURE]

Basic Organization of Stack in Computer System

Stack

A storage device that stores information in such a manner that the item stored last is the
first item retrieved. Also called last-in first-out (LIFO) list. It is useful for compound
arithmetic operations and nested subroutine calls.

The stack in digital computers is a group of memory locations with a register that holds
the address of top of element. This register that holds the address of top of element of the
stack is called Stack Pointer.

Stack Operations
The two operations of a stack are:
1. Push: Inserts an item on top of stack.
2. Pop : Deletes an item from top of stack.

Figure 6 : Operation of stack

[COMPUTER SYSTEM ARCHITECTURE]

ii) (4 + 5) (7 2)
=> 4 5 + 7 2 - *

Reduced Instruction Set Computer (RISC) and Complex Instruction Set
Computers (CISC)

Complex Instruction Set Computers (CISC) has a large instruction set, with hardware
support for a wide variety of operations. In scientific, engineering, and mathematical
operations with hand coded assembly language (and some business applications with hand
coded assembly language), CISC processors usually perform the most work in the shortest
time.
Reduced Instruction Set Computers (RISC) has a small, compact instruction set. In most
business applications and in programs created by compilers from high level language source,
RISC processors usually perform the most work in the shortest time.

[COMPUTER SYSTEM ARCHITECTURE]

RISC architecture

The first prototype computer to use reduced instruction set computer (RISC) architecture was
designed by IBM researcher John Cocke and his team in the late 1970s. For his efforts, Cocke
received the Turing Award in 1987, the US National Medal of Science in 1994, and the US
National Medal of Technology in 1991.

IBM RT PC

The RISC Technology Personal Computer (RT PC) was introduced in 1986, and featured the
32-bit RISC architecture.

IBM RS/6000

The IBM RS/6000 was released in 1990. It was the first machine to feature the IBM POWER
architecture. The RS/6000 has gone through several name changes throughout the years,

[COMPUTER SYSTEM ARCHITECTURE]

The differences between RISC and CISC

Reduced Instruction Set Computer
(RISC)

Complex Instruction Set Computer
(CISC)

Software hardware
Single clock, reduce instruction Multi clock complex instruction
Single word instruction Variable length instruction
Simple operations Complex operations

Memory-to-

Low cycles per second, large code size Small code sizes, high cycles per second
Spend more transistors on memory
registers

Transistors used for storing complex
instructions

Concept of Pipelining

A technique used in advanced microprocessors where the microprocessor begins executing a
second instruction before the first has been completed (instruction pre-fetch). That is, several
instructions are in the pipeline simultaneously, each at a different processing stage.

The pipeline is divided into segments and each segment can execute its operation
concurrently with the other segments. When a segment completes an operation, it passes the
result to the next segment in the pipeline and fetches the next operation from the preceding
segment. The final results of each instruction emerge at the end of the pipeline in rapid
succession.

Although formerly a feature only of high-performance and RISC -based microprocessors,
pipelining is now common in microprocessors used in personal computers. Intel's
Pentium chip, for example, uses pipelining to execute as many as six instructions
simultaneously.

Pipelining is also called pipeline processing.

