Constraint Handling in Metaheuristics and Applications

This book aims to discuss the core and underlying principles and analysis of the different constraint handling approaches. The main emphasis of the book is on providing an enriched literature on mathematical modelling of the test as well as real-world problems with constraints, and further developme...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Kulkarni, Anand J. (Editor, http://id.loc.gov/vocabulary/relators/edt), Mezura-Montes, Efrén. (Editor, http://id.loc.gov/vocabulary/relators/edt), Wang, Yong. (Editor, http://id.loc.gov/vocabulary/relators/edt), Gandomi, Amir H. (Editor, http://id.loc.gov/vocabulary/relators/edt), Krishnasamy, Ganesh. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Subjects:
Online Access:https://doi.org/10.1007/978-981-33-6710-4
LEADER 04308nam a22005415i 4500
001 978-981-33-6710-4
003 DE-He213
005 20210621150636.0
007 cr nn 008mamaa
008 210412s2021 si | s |||| 0|eng d
020 |a 9789813367104  |9 978-981-33-6710-4 
024 7 |a 10.1007/978-981-33-6710-4  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Constraint Handling in Metaheuristics and Applications  |h [electronic resource] /  |c edited by Anand J. Kulkarni, Efrén Mezura-Montes, Yong Wang, Amir H. Gandomi, Ganesh Krishnasamy. 
250 |a 1st ed. 2021. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2021. 
300 |a XXIX, 315 p. 79 illus., 64 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. The Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic algorithm with an extended constraint handling technique for constrained optimization and engineering design -- An improved Cohort Intelligence with Panoptic Learning Behavior for solving constrained problems -- Nature-Inspired Metaheuristic Algorithms for Constraint Handling: Challenges, Issues and Research Perspective. 
520 |a This book aims to discuss the core and underlying principles and analysis of the different constraint handling approaches. The main emphasis of the book is on providing an enriched literature on mathematical modelling of the test as well as real-world problems with constraints, and further development of generalized constraint handling techniques. These techniques may be incorporated in suitable metaheuristics providing a solid optimized solution to the problems and applications being addressed. The book comprises original contributions with an aim to develop and discuss generalized constraint handling approaches/techniques for the metaheuristics and/or the applications being addressed. A variety of novel as well as modified and hybridized techniques have been discussed in the book. The conceptual as well as the mathematical level in all the chapters is well within the grasp of the scientists as well as the undergraduate and graduate students from the engineering and computer science streams. The reader is encouraged to have basic knowledge of probability and mathematical analysis and optimization. The book also provides critical review of the contemporary constraint handling approaches. The contributions of the book may further help to explore new avenues leading towards multidisciplinary research discussions. This book is a complete reference for engineers, scientists, and students studying/working in the optimization, artificial intelligence (AI), or computational intelligence arena. . 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical models. 
650 0 |a Computational intelligence. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14068 
650 2 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
700 1 |a Kulkarni, Anand J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mezura-Montes, Efrén.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wang, Yong.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gandomi, Amir H.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Krishnasamy, Ganesh.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789813367098 
776 0 8 |i Printed edition:  |z 9789813367111 
776 0 8 |i Printed edition:  |z 9789813367128 
856 4 0 |u https://doi.org/10.1007/978-981-33-6710-4 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)