Application of Integrable Systems to Phase Transitions

The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including...

Full description

Main Author: Wang, C.B. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-38565-0
LEADER 03035nam a22004815i 4500
001 978-3-642-38565-0
003 DE-He213
005 20210618230614.0
007 cr nn 008mamaa
008 130719s2013 gw | s |||| 0|eng d
020 |a 9783642385650  |9 978-3-642-38565-0 
024 7 |a 10.1007/978-3-642-38565-0  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Wang, C.B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Application of Integrable Systems to Phase Transitions  |h [electronic resource] /  |c by C.B. Wang. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 219 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Densities in Hermitian Matrix Models -- Bifurcation Transitions and Expansions -- Large-N Transitions and Critical Phenomena -- Densities in Unitary Matrix Models -- Transitions in the Unitary Matrix Models -- Marcenko-Pastur Distribution and McKay’s Law. 
520 |a The eigenvalue densities in various matrix models in quantum chromodynamics (QCD) are ultimately unified in this book by a unified model derived from the integrable systems. Many new density models and free energy functions are consequently solved and presented. The phase transition models including critical phenomena with fractional power-law for the discontinuities of the free energies in the matrix models are systematically classified by means of a clear and rigorous mathematical demonstration. The methods here will stimulate new research directions such as the important Seiberg-Witten differential in Seiberg-Witten theory for solving the mass gap problem in quantum Yang-Mills theory. The formulations and results will benefit researchers and students in the fields of phase transitions, integrable systems, matrix models and Seiberg-Witten theory. 
650 0 |a Mathematical physics. 
650 0 |a Special functions. 
650 1 4 |a Mathematical Applications in the Physical Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13120 
650 2 4 |a Special Functions.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642440243 
776 0 8 |i Printed edition:  |z 9783642385667 
776 0 8 |i Printed edition:  |z 9783642385643 
856 4 0 |u https://doi.org/10.1007/978-3-642-38565-0 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)