Bases, outils et principes pour l'analyse variationnelle
L’étude mathématique des problèmes d’optimisation, ou de ceux dits variationnels de manière générale (c’est-à-dire, « toute situation où il y a quelque chose à minimiser sous des contraintes »), requiert en préalable qu’on en maîtrise les bases, les outils fondamentaux et quelques principes. Le prés...
Main Author: | Hiriart-Urruty, Jean-Baptiste. (Author, http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Corporate Author: | SpringerLink (Online service) |
Language: | French |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2013.
|
Edition: | 1st ed. 2013. |
Series: | Mathématiques et Applications,
70 |
Subjects: | |
Online Access: | https://doi.org/10.1007/978-3-642-30735-5 |
Similar Items
-
Functional Analysis, Calculus of Variations and Optimal Control by Francis Clarke.
by: Clarke, Francis., et al.
Published: (2013) -
Calculus Problems by Marco Baronti, Filippo De Mari, Robertus van der Putten, Irene Venturi.
by: Baronti, Marco., et al.
Published: (2016) -
Iterative Methods for Fixed Point Problems in Hilbert Spaces by Andrzej Cegielski.
by: Cegielski, Andrzej., et al.
Published: (2013) -
Mathematical Analysis, Approximation Theory and Their Applications edited by Themistocles M. Rassias, Vijay Gupta.
Published: (2016) -
Advances in Global Optimization edited by David Gao, Ning Ruan, Wenxun Xing.
Published: (2015)