Computational Intelligence Based on Lattice Theory

The emergence of lattice theory within the field of computational intelligence (CI) is partially due to its proven effectiveness in neural computation. Moreover, lattice theory has the potential to unify a number of diverse concepts and aid in the cross-fertilization of both tools and ideas within t...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Kaburlasos, Vassilis G. (Editor, http://id.loc.gov/vocabulary/relators/edt), Ritter, Gerhard X. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2007.
Edition:1st ed. 2007.
Series:Studies in Computational Intelligence, 67
Subjects:
Online Access:https://doi.org/10.1007/978-3-540-72687-6
LEADER 04279nam a22005175i 4500
001 978-3-540-72687-6
003 DE-He213
005 20210615204105.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 |a 9783540726876  |9 978-3-540-72687-6 
024 7 |a 10.1007/978-3-540-72687-6  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Computational Intelligence Based on Lattice Theory  |h [electronic resource] /  |c edited by Vassilis G. Kaburlasos, Gerhard X. Ritter. 
250 |a 1st ed. 2007. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2007. 
300 |a XVI, 375 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 67 
505 0 |a Neural Computation -- Granular Enhancement of Fuzzy ART/SOM Neural Classifiers Based on Lattice Theory -- Learning in Lattice Neural Networks that Employ Dendritic Computing -- Orthonormal Basis Lattice Neural Networks -- Generalized Lattices Express Parallel Distributed Concept Learning -- Mathematical Morphology Applications -- Noise Masking for Pattern Recall Using a Single Lattice Matrix Associative Memory -- Convex Coordinates From Lattice Independent Sets for Visual Pattern Recognition -- A Lattice-Based Approach to Mathematical Morphology for Greyscale and Colour Images -- Morphological and Certain Fuzzy Morphological Associative Memories for Classification and Prediction -- Machine Learning Applications -- The Fuzzy Lattice Reasoning (FLR) Classifier for Mining Environmental Data -- Machine Learning Techniques for Environmental Data Estimation -- Application of Fuzzy Lattice Neurocomputing (FLN) in Ocean Satellite Images for Pattern Recognition -- Genetically Engineered ART Architectures -- Fuzzy Lattice Reasoning (FLR) Classification Using Similarity Measures -- Logic and Inference -- Fuzzy Prolog: Default Values to Represent Missing Information -- Valuations on Lattices: Fuzzification and its Implications -- L-fuzzy Sets and Intuitionistic Fuzzy Sets -- A Family of Multi-valued t-norms and t-conorms -- The Construction of Fuzzy-valued t-norms and t-conorms. 
520 |a The emergence of lattice theory within the field of computational intelligence (CI) is partially due to its proven effectiveness in neural computation. Moreover, lattice theory has the potential to unify a number of diverse concepts and aid in the cross-fertilization of both tools and ideas within the numerous subfields of CI. The compilation of this eighteen-chapter book is an initiative towards proliferating established knowledge in the hope to further expand it. This edited book is a balanced synthesis of four parts emphasizing, in turn, neural computation, mathematical morphology, machine learning, and (fuzzy) inference/logic. The articles here demonstrate how lattice theory may suggest viable alternatives in practical clustering, classification, pattern analysis, and regression applications. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
700 1 |a Kaburlasos, Vassilis G.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ritter, Gerhard X.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540838630 
776 0 8 |i Printed edition:  |z 9783642091742 
776 0 8 |i Printed edition:  |z 9783540726869 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 67 
856 4 0 |u https://doi.org/10.1007/978-3-540-72687-6 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)