An Introduction to Data Analysis using Aggregation Functions in R

This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical o...

Full description

Main Author: James, Simon. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-46762-7
LEADER 03815nam a22005295i 4500
001 978-3-319-46762-7
003 DE-He213
005 20210619203940.0
007 cr nn 008mamaa
008 161107s2016 gw | s |||| 0|eng d
020 |a 9783319467627  |9 978-3-319-46762-7 
024 7 |a 10.1007/978-3-319-46762-7  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a James, Simon.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Data Analysis using Aggregation Functions in R  |h [electronic resource] /  |c by Simon James. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 199 p. 29 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Aggregating data with averaging functions -- Transforming data -- Weighted averaging -- Averaging with interaction -- Fitting aggregation functions to empirical data -- Solutions. 
520 |a This textbook helps future data analysts comprehend aggregation function theory and methods in an accessible way, focusing on a fundamental understanding of the data and summarization tools. Offering a broad overview of recent trends in aggregation research, it complements any study in statistical or machine learning techniques. Readers will learn how to program key functions in R without obtaining an extensive programming background. Sections of the textbook cover background information and context, aggregating data with averaging functions, power means, and weighted averages including the Borda count. It explains how to transform data using normalization or scaling and standardization, as well as log, polynomial, and rank transforms. The section on averaging with interaction introduces OWS functions and the Choquet integral, simple functions that allow the handling of non-independent inputs. The final chapters examine software analysis with an emphasis on parameter identification rather than technical aspects. This textbook is designed for students studying computer science or business who are interested in tools for summarizing and interpreting data, without requiring a strong mathematical background. It is also suitable for those working on sophisticated data science techniques who seek a better conception of fundamental data aggregation. Solutions to the practice questions are included in the textbook. 
650 0 |a Artificial intelligence. 
650 0 |a Statistics . 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer science—Mathematics. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17020 
650 2 4 |a Applications of Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13003 
650 2 4 |a Mathematics of Computing.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319467610 
776 0 8 |i Printed edition:  |z 9783319467634 
776 0 8 |i Printed edition:  |z 9783319835792 
856 4 0 |u https://doi.org/10.1007/978-3-319-46762-7 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)