Entropy Methods for Diffusive Partial Differential Equations

This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptot...

Full description

Main Author: Jüngel, Ansgar. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-34219-1
LEADER 03246nam a22005175i 4500
001 978-3-319-34219-1
003 DE-He213
005 20210623232512.0
007 cr nn 008mamaa
008 160617s2016 gw | s |||| 0|eng d
020 |a 9783319342191  |9 978-3-319-34219-1 
024 7 |a 10.1007/978-3-319-34219-1  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Jüngel, Ansgar.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Entropy Methods for Diffusive Partial Differential Equations  |h [electronic resource] /  |c by Ansgar Jüngel. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VIII, 139 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1 Introduction -- 2 Fokker–Planck equations -- 3 Systematic Integration by Parts -- 4 Cross-Diffusion Systems -- 5 Towards Discrete Entropy Methods -- 6 Appendix A: Technical Tools. 
520 |a This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars. 
650 0 |a Partial differential equations. 
650 0 |a Functional analysis. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 1 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Functional Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12066 
650 2 4 |a Difference and Functional Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12031 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319342184 
776 0 8 |i Printed edition:  |z 9783319342207 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u https://doi.org/10.1007/978-3-319-34219-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)