Granular Computing in Decision Approximation An Application of Rough Mereology /

This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusion...

Full description

Main Authors: Polkowski, Lech. (Author, http://id.loc.gov/vocabulary/relators/aut), Artiemjew, Piotr. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:Intelligent Systems Reference Library, 77
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-12880-1
LEADER 03958nam a22005055i 4500
001 978-3-319-12880-1
003 DE-He213
005 20210622154739.0
007 cr nn 008mamaa
008 150405s2015 gw | s |||| 0|eng d
020 |a 9783319128801  |9 978-3-319-12880-1 
024 7 |a 10.1007/978-3-319-12880-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Polkowski, Lech.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Granular Computing in Decision Approximation  |h [electronic resource] :  |b An Application of Rough Mereology /  |c by Lech Polkowski, Piotr Artiemjew. 
250 |a 1st ed. 2015. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 452 p. 230 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 77 
505 0 |a Similarity and Granulation -- Mereology and Rough Mereology. Rough Mereological Granulation -- Learning data Classification. Classifiers in General and in Decision Systems -- Methodologies for Granular Reflections -- Covering Strategies -- Layered Granulation -- Naive Bayes Classifier on Granular Reflections -- The Case of Concept-Dependent Granulation -- Granular Computing in the Problem of Missing Values -- Granular Classifiers Based on Weak Rough Inclusions -- Effects of Granulation on Entropy and Noise in Data. - Conclusions -- Appendix. Data Characteristics Bearing on Classification. 
520 |a This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied  within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest  neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce  substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of  rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with  hand examples, the book may also serve as a textbook. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
700 1 |a Artiemjew, Piotr.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319128818 
776 0 8 |i Printed edition:  |z 9783319128795 
776 0 8 |i Printed edition:  |z 9783319366210 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 77 
856 4 0 |u https://doi.org/10.1007/978-3-319-12880-1 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)