Algebraic Number Theory

The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from...

Full description

Main Author: Jarvis, Frazer. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Springer Undergraduate Mathematics Series,
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-07545-7
LEADER 03313nam a22004935i 4500
001 978-3-319-07545-7
003 DE-He213
005 20210618072138.0
007 cr nn 008mamaa
008 140623s2014 gw | s |||| 0|eng d
020 |a 9783319075457  |9 978-3-319-07545-7 
024 7 |a 10.1007/978-3-319-07545-7  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Jarvis, Frazer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Number Theory  |h [electronic resource] /  |c by Frazer Jarvis. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 292 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
505 0 |a Unique factorisation in the natural numbers -- Number fields -- Fields, discriminants and integral bases -- Ideals -- Prime ideals and unique factorisation -- Imaginary quadratic fields -- Lattices and geometrical methods -- Other fields of small degree -- Cyclotomic fields and the Fermat equation -- Analytic methods -- The number field sieve. 
520 |a The technical difficulties of algebraic number theory often make this subject appear difficult to beginners. This undergraduate textbook provides a welcome solution to these problems as it provides an approachable and thorough introduction to the topic. Algebraic Number Theory takes the reader from unique factorisation in the integers through to the modern-day number field sieve. The first few chapters consider the importance of arithmetic in fields larger than the rational numbers. Whilst some results generalise well, the unique factorisation of the integers in these more general number fields often fail. Algebraic number theory aims to overcome this problem. Most examples are taken from quadratic fields, for which calculations are easy to perform. The middle section considers more general theory and results for number fields, and the book concludes with some topics which are more likely to be suitable for advanced students, namely, the analytic class number formula and the number field sieve. This is the first time that the number field sieve has been considered in a textbook at this level. 
650 0 |a Number theory. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 1 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
650 2 4 |a Field Theory and Polynomials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11051 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319075464 
776 0 8 |i Printed edition:  |z 9783319075440 
830 0 |a Springer Undergraduate Mathematics Series,  |x 1615-2085 
856 4 0 |u https://doi.org/10.1007/978-3-319-07545-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)