General Parabolic Mixed Order Systems in Lp and Applications

In this text, a theory for general linear parabolic partial differential equations is established, which covers equations with inhomogeneous symbol structure as well as mixed order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show w...

Full description

Main Authors: Denk, Robert. (Author, http://id.loc.gov/vocabulary/relators/aut), Kaip, Mario. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Edition:1st ed. 2013.
Series:Operator Theory: Advances and Applications, 239
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-02000-6
LEADER 03699nam a22005295i 4500
001 978-3-319-02000-6
003 DE-He213
005 20210618120533.0
007 cr nn 008mamaa
008 131122s2013 gw | s |||| 0|eng d
020 |a 9783319020006  |9 978-3-319-02000-6 
024 7 |a 10.1007/978-3-319-02000-6  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.353  |2 23 
100 1 |a Denk, Robert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a General Parabolic Mixed Order Systems in Lp and Applications  |h [electronic resource] /  |c by Robert Denk, Mario Kaip. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a VIII, 250 p. 16 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 239 
505 0 |a Introduction and Outline -- 1 The joint time-space H(infinity)-calculus -- 2 The Newton polygon approach for mixed-order systems.-3 Triebel-Lizorkin spaces and the Lp-Lq setting.- 4 Application to parabolic differential equations -- List of figures.-Bibliography -- List of symbols -- Index. 
520 |a In this text, a theory for general linear parabolic partial differential equations is established, which covers equations with inhomogeneous symbol structure as well as mixed order systems. Typical applications include several variants of the Stokes system and free boundary value problems. We show well-posedness in Lp-Lq-Sobolev spaces in time and space for the linear problems (i.e., maximal regularity), which is the key step for the treatment of nonlinear problems. The theory is based on the concept of the Newton polygon and can cover equations that are not accessible by standard methods as, e.g., semigroup theory. Results are obtained in different types of non-integer Lp-Sobolev spaces as Besov spaces, Bessel potential spaces, and Triebel–Lizorkin spaces. The latter class appears in a natural way as traces of Lp-Lq-Sobolev spaces. We also present a selection of applications in the whole space and on half-spaces. Among others, we prove well-posedness of the linearizations of the generalized thermoelastic plate equation, the two-phase Navier–Stokes equations with Boussinesq–Scriven surface, and the Lp-Lq two-phase Stefan problem with Gibbs–Thomson correction. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Operator theory. 
650 1 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
650 2 4 |a Operator Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12139 
700 1 |a Kaip, Mario.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319020013 
776 0 8 |i Printed edition:  |z 9783319019994 
776 0 8 |i Printed edition:  |z 9783319375922 
830 0 |a Operator Theory: Advances and Applications,  |x 0255-0156 ;  |v 239 
856 4 0 |u https://doi.org/10.1007/978-3-319-02000-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)