Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings /

This book constitutes the refereed proceedings of the First MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the First International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with MICCAI 2019, in Shenzhen,...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Wang, Qian. (Editor, http://id.loc.gov/vocabulary/relators/edt), Milletari, Fausto. (Editor, http://id.loc.gov/vocabulary/relators/edt), Nguyen, Hien V. (Editor, http://id.loc.gov/vocabulary/relators/edt), Albarqouni, Shadi. (Editor, http://id.loc.gov/vocabulary/relators/edt), Cardoso, M. Jorge. (Editor, http://id.loc.gov/vocabulary/relators/edt), Rieke, Nicola. (Editor, http://id.loc.gov/vocabulary/relators/edt), Xu, Ziyue. (Editor, http://id.loc.gov/vocabulary/relators/edt), Kamnitsas, Konstantinos. (Editor, http://id.loc.gov/vocabulary/relators/edt), Patel, Vishal. (Editor, http://id.loc.gov/vocabulary/relators/edt), Roysam, Badri. (Editor, http://id.loc.gov/vocabulary/relators/edt), Jiang, Steve. (Editor, http://id.loc.gov/vocabulary/relators/edt), Zhou, Kevin. (Editor, http://id.loc.gov/vocabulary/relators/edt), Luu, Khoa. (Editor, http://id.loc.gov/vocabulary/relators/edt), Le, Ngan. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 11795
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-33391-1
LEADER 07361nam a22006975i 4500
001 978-3-030-33391-1
003 DE-He213
005 20210625000201.0
007 cr nn 008mamaa
008 191011s2019 gw | s |||| 0|eng d
020 |a 9783030333911  |9 978-3-030-33391-1 
024 7 |a 10.1007/978-3-030-33391-1  |2 doi 
050 4 |a TA1630-1650 
072 7 |a UYT  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYT  |2 thema 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data  |h [electronic resource] :  |b First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings /  |c edited by Qian Wang, Fausto Milletari, Hien V. Nguyen, Shadi Albarqouni, M. Jorge Cardoso, Nicola Rieke, Ziyue Xu, Konstantinos Kamnitsas, Vishal Patel, Badri Roysam, Steve Jiang, Kevin Zhou, Khoa Luu, Ngan Le. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2019. 
300 |a XVII, 254 p. 113 illus., 79 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 11795 
505 0 |a DART 2019 -- Noise as Domain Shift: Denoising Medical Images by Unpaired Image Translation -- Temporal Consistency Objectives Regularize the Learning of Disentangled Representations -- Multi-layer Domain Adaptation for Deep Convolutional Networks -- Intramodality Domain Adaptation using Self Ensembling and Adversarial Training -- Learning Interpretable Disentangled Representations using Adversarial VAEs -- Synthesising Images and Labels Between MR Sequence Types With CycleGAN -- Multi-Domain Adaptation in Brain MRI through Paired Consistency and Adversarial Learning -- Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans -- A Pulmonary Nodule Detection Method Based on Residual Learning and Dense Connection -- Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to Multi-site Traumatic Brain Injury Images -- Improving Pathological Structure Segmentation Via Transfer Learning Across Diseases -- Generating Virtual Chromoendoscopic Images and Improving Detectability and Classification Performance of Endoscopic Lesions -- MIL3ID 2019 -- Self-supervised learning of inverse problem solvers in medical imaging -- Weakly Supervised Segmentation of Vertebral Bodies with Iterative Slice-propagation -- A Cascade Attention Network for Liver Lesion Classification in Weakly-labeled Multi-phase CT Images -- CT Data Curation for Liver Patients: Phase Recognition in Dynamic Contrast-Enhanced CT -- Active Learning Technique for Multimodal Brain Tumor Segmentation using Limited Labeled Images -- Semi-supervised Learning of Fetal Anatomy from Ultrasound -- Multi-modal segmentation with missing MR sequences using pre-trained fusion networks -- More unlabelled data or label more data? A study on semi-supervised laparoscopic image segmentation -- Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition -- A Convolutional Neural Network Method for Boundary Optimization Enables Few-Shot Learning for Biomedical Image Segmentation -- Transfer Learning from Partial Annotations for Whole Brain Segmentation -- Learning to Segment Skin Lesions from Noisy Annotations -- A Weakly Supervised Method for Instance Segmentation of Biological Cells -- Towards Practical Unsupervised Anomaly Detection on Retinal Images -- Fine tuning U-Net for ultrasound image segmentation: which layers -- Multi-task Learning for Neonatal Brain Segmentation Using 3D Dense-Unet with Dense Attention Guided by Geodesic Distance. 
520 |a This book constitutes the refereed proceedings of the First MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the First International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. DART 2019 accepted 12 papers for publication out of 18 submissions. The papers deal with methodological advancements and ideas that can improve the applicability of machine learning and deep learning approaches to clinical settings by making them robust and consistent across different domains. MIL3ID accepted 16 papers out of 43 submissions for publication, dealing with best practices in medical image learning with label scarcity and data imperfection. . 
650 0 |a Optical data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Health informatics. 
650 1 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Health Informatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23060 
700 1 |a Wang, Qian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Milletari, Fausto.  |e editor.  |0 (orcid)0000-0002-8319-4773  |1 https://orcid.org/0000-0002-8319-4773  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Nguyen, Hien V.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Albarqouni, Shadi.  |e editor.  |0 (orcid)0000-0003-2157-2211  |1 https://orcid.org/0000-0003-2157-2211  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Cardoso, M. Jorge.  |e editor.  |0 (orcid)0000-0003-1284-2558  |1 https://orcid.org/0000-0003-1284-2558  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rieke, Nicola.  |e editor.  |0 (orcid)0000-0003-0241-9334  |1 https://orcid.org/0000-0003-0241-9334  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Xu, Ziyue.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kamnitsas, Konstantinos.  |e editor.  |0 (orcid)0000-0003-3281-6509  |1 https://orcid.org/0000-0003-3281-6509  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Patel, Vishal.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Roysam, Badri.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jiang, Steve.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zhou, Kevin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Luu, Khoa.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Le, Ngan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030333904 
776 0 8 |i Printed edition:  |z 9783030333928 
830 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 11795 
856 4 0 |u https://doi.org/10.1007/978-3-030-33391-1 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)