An Introduction to Queueing Theory Modeling and Analysis in Applications /

This introductory textbook is designed for a one-semester course on queueing theory that does not require a course in stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introducti...

Full description

Main Author: Bhat, U. Narayan. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Boston, MA : Birkhäuser Boston : Imprint: Birkhäuser, 2008.
Edition:1st ed. 2008.
Series:Statistics for Industry and Technology,
Subjects:
Online Access:https://doi.org/10.1007/978-0-8176-4725-4
LEADER 05143nam a22006135i 4500
001 978-0-8176-4725-4
003 DE-He213
005 20210623063735.0
007 cr nn 008mamaa
008 100301s2008 xxu| s |||| 0|eng d
020 |a 9780817647254  |9 978-0-8176-4725-4 
024 7 |a 10.1007/978-0-8176-4725-4  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Bhat, U. Narayan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Queueing Theory  |h [electronic resource] :  |b Modeling and Analysis in Applications /  |c by U. Narayan Bhat. 
250 |a 1st ed. 2008. 
264 1 |a Boston, MA :  |b Birkhäuser Boston :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XII, 268 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics for Industry and Technology,  |x 2364-6241 
505 0 |a System Element Models -- Basic Concepts in Stochastic Processes -- Simple Markovian Queueing Systems -- Imbedded Markov Chain Models -- Extended Markov Models -- Queueing Networks -- Renewal Process Models -- The General Queue //1 and Approximations -- Statistical Inference for Queueing Models -- Decision Problems in Queueing Theory -- Modeling and Analysis Using Computational Tools -- Poisson Process: Properties and Related Distributions -- Markov Process -- Results from Mathematics. 
520 |a This introductory textbook is designed for a one-semester course on queueing theory that does not require a course in stochastic processes as a prerequisite. By integrating the necessary background on stochastic processes with the analysis of models, the work provides a sound foundational introduction to the modeling and analysis of queueing systems for a broad interdisciplinary audience of students in mathematics, statistics, and applied disciplines such as computer science, operations research, and engineering. Key features: * An introductory chapter including a historical account of the growth of queueing theory in the last 100 years. * A modeling-based approach with emphasis on identification of models using topics such as collection of data and tests for stationarity and independence of observations. * Rigorous treatment of the foundations of basic models commonly used in applications with appropriate references for advanced topics. * A chapter on modeling and analysis using computational tools. * A comprehensive treatment of statistical inference for queueing systems. * A discussion of operational and decision problems. * Modeling exercises as a motivational tool, and review exercises covering background material on statistical distributions. An Introduction to Queueing Theory may be used as a textbook by first-year graduate students in fields such as computer science, operations research, industrial and systems engineering, as well as related fields such as manufacturing and communications engineering. Upper-level undergraduate students in mathematics, statistics, and engineering may also use the book in an elective introductory course on queueing theory. With its rigorous coverage of basic material and extensive bibliography of the queueing literature, the work may also be useful to applied scientists and practitioners as a self-study reference for applications and further research. 
650 0 |a Probabilities. 
650 0 |a Statistics . 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Mathematical models. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17020 
650 2 4 |a Operations Research, Management Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26024 
650 2 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Mathematical Modeling and Industrial Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14068 
650 2 4 |a Industrial and Production Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T22008 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9780817672294 
776 0 8 |i Printed edition:  |z 9780817647247 
830 0 |a Statistics for Industry and Technology,  |x 2364-6241 
856 4 0 |u https://doi.org/10.1007/978-0-8176-4725-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)